For the system -Delta U-i + U-i = U-i(3) - beta U-i Sigma U-j not equal i(j)2, i = 1,...,k, (with k >= 3), we prove the existence for beta large of positive radial solutions on R-N. We show that as beta -> +infinity, the profile of each component U-i separates, in many pulses, from the others. Moreover, we can prescribe the location of such pulses in terms of the oscillations of the changing-sign solutions of the scalar equation -Delta W + W = W-3. Within an Hartree-Fock approximation, this provides a theoretical indication of phase separation into many nodal domains for the k-mixtures of Bose-Einstein condensates.
Terracini, S., & Verzini, G. (2009). Multipulse Phases in k-Mixtures of Bose-Einstein Condensates. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 194(3), 717-741.
Citazione: | Terracini, S., & Verzini, G. (2009). Multipulse Phases in k-Mixtures of Bose-Einstein Condensates. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 194(3), 717-741. |
Tipo: | Articolo in rivista - Articolo scientifico |
Carattere della pubblicazione: | Scientifica |
Titolo: | Multipulse Phases in k-Mixtures of Bose-Einstein Condensates |
Autori: | Terracini, S; Verzini, G |
Autori: | |
Data di pubblicazione: | dic-2009 |
Lingua: | English |
Rivista: | ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/s00205-008-0172-y |
Appare nelle tipologie: | 01 - Articolo su rivista |