Following Cox Wermuth (1994, 2002), we show that the distribution of a set of binary observable variables, induced by a certain discrete latent variable model, may be approximated by a quadratic exponential distribution. This discrete latent variable model is equivalent to the latent-class version of the two-parameter logistic model of Birnbaum (1968), which may be seen as a generalized version of the Rasch model (Rasch, 1960, 196). On the basis of this result, we develop an approximate maximum likelihood estimator of the item parameters of the two-parameter logistic model which is very simply implemented. The proposed approach is illustrated through an example based on a dataset on educational assessment. © 2007 Biometrika Trust.
Bartolucci, F., & Pennoni, F. (2007). On the approximation of the quadratic exponential distribution in a latent variable context. BIOMETRIKA, 94(3), 745-754.
Citazione: | Bartolucci, F., & Pennoni, F. (2007). On the approximation of the quadratic exponential distribution in a latent variable context. BIOMETRIKA, 94(3), 745-754. |
Tipo: | Articolo in rivista - Articolo scientifico |
Carattere della pubblicazione: | Scientifica |
Titolo: | On the approximation of the quadratic exponential distribution in a latent variable context |
Autori: | Bartolucci, F; Pennoni, F |
Autori: | |
Data di pubblicazione: | 2007 |
Lingua: | English |
Rivista: | BIOMETRIKA |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1093/biomet/asm045 |
Appare nelle tipologie: | 01 - Articolo su rivista |