In this paper we give the complete classification of solitons for a cubic nonlinear Schrödinger equation on the simplest network with a nontrivial topology: the tadpole graph, i.e., a ring with a half line attached to it and free boundary conditions at the junction. This is a step toward the modelization of condensate propagation and confinement in quasi-one-dimensional traps. The model, although simple, exhibits a surprisingly rich behavior and in particular we show that it admits: (i) a denumerable family of continuous branches of embedded solitons vanishing on the half line and bifurcating from linear eigenstates and threshold resonances of the system; (ii) a continuous branch of edge solitons bifurcating from the previous families at the threshold of the continuous spectrum with a pitchfork bifurcation; and (iii) a finite family of continuous branches of solitons without linear analog. All the solutions are explicitly constructed in terms of elliptic Jacobian functions. Moreover we show that families of nonlinear bound states of the above kind continue to exist in the presence of a uniform magnetic field orthogonal to the plane of the ring when a well definite flux quantization condition holds true. In this sense the magnetic field acts as a control parameter. Finally we highlight the role of resonances in the linearization as a signature of the occurrence of bifurcations of solitons from the continuous spectrum.

Noja, D., Cacciapuoti, C., Finco, D. (2015). Topology-induced bifurcations for the nonlinear Schrödinger equation on the tadpole graph. PHYSICAL REVIEW E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS, 91(1), 013206 [10.1103/PhysRevE.91.013206].

Topology-induced bifurcations for the nonlinear Schrödinger equation on the tadpole graph

NOJA, DIEGO DAVIDE
Primo
;
2015

Abstract

In this paper we give the complete classification of solitons for a cubic nonlinear Schrödinger equation on the simplest network with a nontrivial topology: the tadpole graph, i.e., a ring with a half line attached to it and free boundary conditions at the junction. This is a step toward the modelization of condensate propagation and confinement in quasi-one-dimensional traps. The model, although simple, exhibits a surprisingly rich behavior and in particular we show that it admits: (i) a denumerable family of continuous branches of embedded solitons vanishing on the half line and bifurcating from linear eigenstates and threshold resonances of the system; (ii) a continuous branch of edge solitons bifurcating from the previous families at the threshold of the continuous spectrum with a pitchfork bifurcation; and (iii) a finite family of continuous branches of solitons without linear analog. All the solutions are explicitly constructed in terms of elliptic Jacobian functions. Moreover we show that families of nonlinear bound states of the above kind continue to exist in the presence of a uniform magnetic field orthogonal to the plane of the ring when a well definite flux quantization condition holds true. In this sense the magnetic field acts as a control parameter. Finally we highlight the role of resonances in the linearization as a signature of the occurrence of bifurcations of solitons from the continuous spectrum.
Articolo in rivista - Articolo scientifico
Solitons; Nonlinear Schroedinger Equation; Graphs
English
2015
91
1
013206
013206
reserved
Noja, D., Cacciapuoti, C., Finco, D. (2015). Topology-induced bifurcations for the nonlinear Schrödinger equation on the tadpole graph. PHYSICAL REVIEW E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS, 91(1), 013206 [10.1103/PhysRevE.91.013206].
File in questo prodotto:
File Dimensione Formato  
PhysRevE.91.013206.pdf

Solo gestori archivio

Dimensione 300.65 kB
Formato Adobe PDF
300.65 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/70952
Citazioni
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 43
Social impact