In the last decades, several scientific researches have been focused on studying how to encompass and convert – by a theoretical pathway – the information encoded in the molecular structure into one or more numbers used to establish quantitative relationships between structures and properties, biological activities, or other experimental properties. Molecular descriptors are formally mathematical representations of a molecule obtained by a well-specified algorithm applied to a defined molecular representation or a well-specified experimental procedure. They play a fundamental role in chemistry, pharmaceutical sciences, environmental protection policy, toxicology, ecotoxicology, health research, and quality control. Evidence of the interest of the scientific community in the molecular descriptors is provided by the huge number of descriptors proposed up today: more than 5000 descriptors derived from different theories and approaches are defined in the literature and most of them can be calculated by means of dedicated software applications. Molecular descriptors are of outstanding importance in the research fields of quantitative structure–activity relationships (QSARs) and quantitative structure–property relationships (QSPRs), where they are the independent chemical information used to predict the properties of interest. Along with the definition of appropriate molecular descriptors, the molecular structure representation and the mathematical tools for deriving and assessing models are other fundamental components of the QSAR/QSPR approach. The remarkable progress during the last few years in chemometrics and chemoinformatics has led to new strategies for finding mathematical meaningful relationships between the molecular structure and biological activities, physico-chemical, toxicological, and environmental properties of chemicals. Different approaches for deriving molecular descriptors here reviewed and some of the most relevant descriptors are presented in detail with numerical examples

Consonni, V., & Todeschini, R. (2010). Molecular Descriptors. In M. Cronin, J. Leszczynski, & T. Puzyn (a cura di), Recent Advances in QSAR Studies: Methods and Applications (pp. 29-102). Dordrecht : Springer [10.1007/978-1-4020-9783-6_3].

Molecular Descriptors

CONSONNI, VIVIANA
;
TODESCHINI, ROBERTO
2010

Abstract

In the last decades, several scientific researches have been focused on studying how to encompass and convert – by a theoretical pathway – the information encoded in the molecular structure into one or more numbers used to establish quantitative relationships between structures and properties, biological activities, or other experimental properties. Molecular descriptors are formally mathematical representations of a molecule obtained by a well-specified algorithm applied to a defined molecular representation or a well-specified experimental procedure. They play a fundamental role in chemistry, pharmaceutical sciences, environmental protection policy, toxicology, ecotoxicology, health research, and quality control. Evidence of the interest of the scientific community in the molecular descriptors is provided by the huge number of descriptors proposed up today: more than 5000 descriptors derived from different theories and approaches are defined in the literature and most of them can be calculated by means of dedicated software applications. Molecular descriptors are of outstanding importance in the research fields of quantitative structure–activity relationships (QSARs) and quantitative structure–property relationships (QSPRs), where they are the independent chemical information used to predict the properties of interest. Along with the definition of appropriate molecular descriptors, the molecular structure representation and the mathematical tools for deriving and assessing models are other fundamental components of the QSAR/QSPR approach. The remarkable progress during the last few years in chemometrics and chemoinformatics has led to new strategies for finding mathematical meaningful relationships between the molecular structure and biological activities, physico-chemical, toxicological, and environmental properties of chemicals. Different approaches for deriving molecular descriptors here reviewed and some of the most relevant descriptors are presented in detail with numerical examples
No
Scientifica
Capitolo o saggio
molecular descriptors; QSAR
English
Recent Advances in QSAR Studies: Methods and Applications
978-1-4020-9782-9
Consonni, V., & Todeschini, R. (2010). Molecular Descriptors. In M. Cronin, J. Leszczynski, & T. Puzyn (a cura di), Recent Advances in QSAR Studies: Methods and Applications (pp. 29-102). Dordrecht : Springer [10.1007/978-1-4020-9783-6_3].
Consonni, V; Todeschini, R
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10281/7043
Citazioni
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 34
Social impact