We consider generalized Gaudin models in an external magnetic field corresponding to Lie algebras g=gl(n), sp(2m), so(2m) and non-skew-symmetric classical r-matrices with spectral parameters associated with certain Z2-gradings of the Lie algebras g. Using the connection of this type of the generalized Gaudin models with reflection equation algebras we find the spectrum of the generalized Gaudin hamiltonians and the corresponding Bethe-type equations. © 2013 Elsevier B.V.
Skrypnyk, T. (2013). "Z2-graded" Gaudin models and analytical Bethe ansatz. NUCLEAR PHYSICS. B, 870(3), 495-529 [10.1016/j.nuclphysb.2013.01.013].
"Z2-graded" Gaudin models and analytical Bethe ansatz
SKRYPNYK, TARASPrimo
2013
Abstract
We consider generalized Gaudin models in an external magnetic field corresponding to Lie algebras g=gl(n), sp(2m), so(2m) and non-skew-symmetric classical r-matrices with spectral parameters associated with certain Z2-gradings of the Lie algebras g. Using the connection of this type of the generalized Gaudin models with reflection equation algebras we find the spectrum of the generalized Gaudin hamiltonians and the corresponding Bethe-type equations. © 2013 Elsevier B.V.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.