Developmental dyslexia (DD) is a heritable neurodevelopmental reading disorder that could arise from auditory, visual, and cross-modal integration deficits. A deletion in intron 2 of the DCDC2 gene (hereafter DCDC2d) increases the risk for DD and related phenotypes. In this study, first we report that illusory visual motion perception-specifically processed by the magnocellular-dorsal (M-D) stream-is impaired in children with DD compared with age-matched and reading-level controls. Second, we test for the specificity of the DCDC2d effects on the M-D stream. Children with DD and DCDC2d need significantly more contrast to process illusory motion relative to their counterpart without DCDC2d and to age-matched and reading-level controls. Irrespective of the genetic variant, children with DD perform normally in the parvocellular-ventral task. Finally, we find that DCDC2d is associated with the illusory motion perception also in adult normal readers, showing that the M-D deficit is a potential neurobiological risk factor of DD rather than a simple effect of reading disorder. Our findings demonstrate, for the first time, that a specific neurocognitive dysfunction tapping the M-D stream is linked with a well-defined genetic susceptibility

Gori, S., Mascheretti, S., Giora, E., Ronconi, L., Ruffino, M., Quadrelli, E., et al. (2014). The DCDC2 Intron 2 Deletion Impairs Illusory Motion Perception Unveiling the Selective Role of Magnocellular-Dorsal Stream in Reading (Dis)ability. CEREBRAL CORTEX, 25(6), 1685-1695 [10.1093/cercor/bhu234].

The DCDC2 Intron 2 Deletion Impairs Illusory Motion Perception Unveiling the Selective Role of Magnocellular-Dorsal Stream in Reading (Dis)ability

GIORA, ENRICO;QUADRELLI, ERMANNO;
2014

Abstract

Developmental dyslexia (DD) is a heritable neurodevelopmental reading disorder that could arise from auditory, visual, and cross-modal integration deficits. A deletion in intron 2 of the DCDC2 gene (hereafter DCDC2d) increases the risk for DD and related phenotypes. In this study, first we report that illusory visual motion perception-specifically processed by the magnocellular-dorsal (M-D) stream-is impaired in children with DD compared with age-matched and reading-level controls. Second, we test for the specificity of the DCDC2d effects on the M-D stream. Children with DD and DCDC2d need significantly more contrast to process illusory motion relative to their counterpart without DCDC2d and to age-matched and reading-level controls. Irrespective of the genetic variant, children with DD perform normally in the parvocellular-ventral task. Finally, we find that DCDC2d is associated with the illusory motion perception also in adult normal readers, showing that the M-D deficit is a potential neurobiological risk factor of DD rather than a simple effect of reading disorder. Our findings demonstrate, for the first time, that a specific neurocognitive dysfunction tapping the M-D stream is linked with a well-defined genetic susceptibility
Articolo in rivista - Articolo scientifico
DCDC2; dorsal pathway; illusory motion perception; reading (dis)abilities
English
2014
25
6
1685
1695
none
Gori, S., Mascheretti, S., Giora, E., Ronconi, L., Ruffino, M., Quadrelli, E., et al. (2014). The DCDC2 Intron 2 Deletion Impairs Illusory Motion Perception Unveiling the Selective Role of Magnocellular-Dorsal Stream in Reading (Dis)ability. CEREBRAL CORTEX, 25(6), 1685-1695 [10.1093/cercor/bhu234].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/62833
Citazioni
  • Scopus 60
  • ???jsp.display-item.citation.isi??? 52
Social impact