While the genetic and environmental contributions to developmental dyslexia (DD) have been studied extensively, the effects of identified genetic risk susceptibility and of specified environmental hazardous factors have usually been investigated separately. We assessed potential gene-by-environment (GxE) interactions on DD-related reading, spelling and memory phenotypes. The presence of GxE effects were investigated for the DYX1C1, DCDC2, KIAA0319 and ROBO1 genes, and for seven specified environmental moderators in 165 nuclear families in which at least one member had DD, by implementing a general test for GxE interaction in sib-pair-based association analysis of quantitative traits. Our results support a diathesis-stress model for both reading and memory composites: GxE effects were found between some specified environmental moderators (i.e. maternal smoke during pregnancy, birth weight and socio-economic status) and the DYX1C1-1259C/G marker. We have provided initial evidence that the joint analysis of identified genetic risk susceptibility and measured putative risk factors can be exploited in the study of the etiology of DD and reading-related neuropsychological phenotypes, and may assist in identifying/preventing the occurrence of DD.

Mascheretti, S., Bureau, A., Battaglia, M., Simone, D., Quadrelli, E., Croteau, J., et al. (2013). An assessment of gene-by-environment interactions in developmental dyslexia-related phenotypes. GENES BRAIN AND BEHAVIOR, 12(1), 47-55 [10.1111/gbb.12000].

An assessment of gene-by-environment interactions in developmental dyslexia-related phenotypes

QUADRELLI, ERMANNO;
2013

Abstract

While the genetic and environmental contributions to developmental dyslexia (DD) have been studied extensively, the effects of identified genetic risk susceptibility and of specified environmental hazardous factors have usually been investigated separately. We assessed potential gene-by-environment (GxE) interactions on DD-related reading, spelling and memory phenotypes. The presence of GxE effects were investigated for the DYX1C1, DCDC2, KIAA0319 and ROBO1 genes, and for seven specified environmental moderators in 165 nuclear families in which at least one member had DD, by implementing a general test for GxE interaction in sib-pair-based association analysis of quantitative traits. Our results support a diathesis-stress model for both reading and memory composites: GxE effects were found between some specified environmental moderators (i.e. maternal smoke during pregnancy, birth weight and socio-economic status) and the DYX1C1-1259C/G marker. We have provided initial evidence that the joint analysis of identified genetic risk susceptibility and measured putative risk factors can be exploited in the study of the etiology of DD and reading-related neuropsychological phenotypes, and may assist in identifying/preventing the occurrence of DD.
Articolo in rivista - Articolo scientifico
Tobacco Smoke Pollution; Polymorphism, Single Nucleotide; Humans; Genetic Association Studies; Dyslexia; Child; Nerve Tissue Proteins; Pregnancy; Socioeconomic Factors; Quantitative Trait, Heritable; Phenotype; Memory; Nuclear Proteins; Stress, Psychological; Case-Control Studies; Gene-Environment Interaction; Female; Male; Prenatal Exposure Delayed Effects
English
47
55
9
Mascheretti, S., Bureau, A., Battaglia, M., Simone, D., Quadrelli, E., Croteau, J., et al. (2013). An assessment of gene-by-environment interactions in developmental dyslexia-related phenotypes. GENES BRAIN AND BEHAVIOR, 12(1), 47-55 [10.1111/gbb.12000].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/62826
Citazioni
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 42
Social impact