Let X be a set. Then an unordered relation on X is a family R of subsets of X. For such a family let G(R) be the group of all permutations g of X for which x^{g} belongs to R whenever x belongs to R. We are interested in permutation groups which can be represented in the shape G=G(R) for an unordered relation R on X

Dalla Volta, F., Siemons, J. (2009). Permutation groups defined by unordered relations. In Ischia Group theory 2008 (pp.56-67). World Scentific.

Permutation groups defined by unordered relations

Dalla Volta, F;
2009

Abstract

Let X be a set. Then an unordered relation on X is a family R of subsets of X. For such a family let G(R) be the group of all permutations g of X for which x^{g} belongs to R whenever x belongs to R. We are interested in permutation groups which can be represented in the shape G=G(R) for an unordered relation R on X
Si
paper
Groups, Permutation groups, relations, regular sets
English
Ischia Group Theory 2008
978-981-4277-79-2
Dalla Volta, F., Siemons, J. (2009). Permutation groups defined by unordered relations. In Ischia Group theory 2008 (pp.56-67). World Scentific.
Dalla Volta, F; Siemons, J
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/6264
Citazioni
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
Social impact