This paper introduces the concepts of error vector and error space, directly bound to semantics, one of the hottest topics in genetic programming. Based on these concepts, we introduce the notions of optimally aligned individuals and optimally coplanar individuals. We show that, given optimally aligned, or optimally coplanar, individuals, it is possible to construct a globally optimal solution analytically. Thus, we introduce a genetic programming framework for symbolic regression called Error Space Alignment GP (ESAGP) and two of its instances: ESAGP-1, whose objective is to find optimally aligned individuals, and ESAGP-2, whose objective is to find optimally coplanar individuals. We also discuss how to generalize the approach to any number of dimensions. Using two complex real-life applications, we provide experimental evidence that ESAGP-2 outperforms ESAGP-1, which in turn outperforms both standard GP and geometric semantic GP. This suggests that “adding dimensions” is beneficial and encourages us to pursue the study in many different directions, that we summarize in the final part of the manuscript
Ruberto, S., Vanneschi, L., Castelli, M., Silva, S. (2014). ESAGP – A semantic GP framework based on alignment in the error space. In 17th European Conference on Genetic Programming, EuroGP 2014 (pp.150-161) [10.1007/978-3-662-44303-3_13].
ESAGP – A semantic GP framework based on alignment in the error space
VANNESCHI, LEONARDO;CASTELLI, MAURO;
2014
Abstract
This paper introduces the concepts of error vector and error space, directly bound to semantics, one of the hottest topics in genetic programming. Based on these concepts, we introduce the notions of optimally aligned individuals and optimally coplanar individuals. We show that, given optimally aligned, or optimally coplanar, individuals, it is possible to construct a globally optimal solution analytically. Thus, we introduce a genetic programming framework for symbolic regression called Error Space Alignment GP (ESAGP) and two of its instances: ESAGP-1, whose objective is to find optimally aligned individuals, and ESAGP-2, whose objective is to find optimally coplanar individuals. We also discuss how to generalize the approach to any number of dimensions. Using two complex real-life applications, we provide experimental evidence that ESAGP-2 outperforms ESAGP-1, which in turn outperforms both standard GP and geometric semantic GP. This suggests that “adding dimensions” is beneficial and encourages us to pursue the study in many different directions, that we summarize in the final part of the manuscriptI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.