In this article we consider contact mappings on Carnot groups. Namely, we are interested in those mappings whose differential preserves the horizontal space, defined by the first stratum of the natural stratification of the Lie algebra of a Carnot group. We give a sufficient condition for a Carnot group G to admit an infinite dimensional space of contact mappings, that is, for G to be nonrigid. A generalization of Kirillov’s Lemma is also given. Moreover, we construct a new example of nonrigid Carnot group.

Ottazzi, A. (2008). A sufficient condition for nonrigidity of Carnot groups. MATHEMATISCHE ZEITSCHRIFT, 259(3), 617-629 [10.1007/s00209-007-0240-2].

A sufficient condition for nonrigidity of Carnot groups

OTTAZZI, ALESSANDRO
2008

Abstract

In this article we consider contact mappings on Carnot groups. Namely, we are interested in those mappings whose differential preserves the horizontal space, defined by the first stratum of the natural stratification of the Lie algebra of a Carnot group. We give a sufficient condition for a Carnot group G to admit an infinite dimensional space of contact mappings, that is, for G to be nonrigid. A generalization of Kirillov’s Lemma is also given. Moreover, we construct a new example of nonrigid Carnot group.
Articolo in rivista - Articolo scientifico
Carnot groups; contact mappings; sub-Riemannian geometry; rigidity
English
2008
259
3
617
629
none
Ottazzi, A. (2008). A sufficient condition for nonrigidity of Carnot groups. MATHEMATISCHE ZEITSCHRIFT, 259(3), 617-629 [10.1007/s00209-007-0240-2].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/6168
Citazioni
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 15
Social impact