It is becoming increasingly clear that a dysfunction of the GABAergic/glutamatergic network in telencephalic brain structures may be the pathogenetic mechanism underlying psychotic symptoms in schizophrenia (SZ) and bipolar (BP) disorder patients. Data obtained in Costa's laboratory (1996-2009) suggest that this dysfunction may be mediated primarily by a downregulation in the expression of GABAergic genes (e.g., glutamic acid decarboxylase 67 [GAD 67] and reelin) associated with DNA methyltransferase (DNMT)-dependent hypermethylation of their promoters. A pharmacological strategy to reduce the hypermethylation of GABAergic promoters is to administer drugs, such as the histone deacetylase (HDAC) inhibitor valproate (VPA), that induce DNA-demethylation when administered at doses that facilitate chromatin remodeling. The benefits elicited by combining VPA with antipsychotics in the treatment of BP disorder suggest that an investigation of the epigenetic interaction of these drugs is warranted. Our studies in mice suggest that when associated with VPA, clinically relevant doses of clozapine elicit a synergistic potentiation of VPA-induced GABAergic promoter demethylation. Olanzapine and quetiapine (two clozapine congeners) also facilitate chromatin remodeling but at doses higher than used clinically, whereas haloperidol and risperidone are inactive. Hence, the synergistic potentiation of VPA's action on chromatin remodeling by clozapine appears to be a unique property of the dibenzepines and is independent of their action on catecholamine or serotonin receptors. By activating DNA-demethylation, the association of clozapine or its derivatives with VPA or other more potent and selective HDAC inhibitors may be considered a promising treatment strategy for normalizing GABAergic promoter hypermethylation and the GABAergic gene expression downregulation detected in the postmortem brain of SZ and BP disorder patients. This article is part of a Special Issue entitled 'Trends in Neuropharmacology: In Memory of Erminio Costa'. © 2011 Elsevier Ltd. All rights reserved.

Guidotti, A., Auta, J., Chen, Y., Davis, J., Dong, E., Gavin, D., et al. (2011). Epigenetic GABAergic targets in schizophrenia and bipolar disorder. NEUROPHARMACOLOGY, 60(7-8), 1007-1016 [10.1016/j.neuropharm.2010.10.021].

Epigenetic GABAergic targets in schizophrenia and bipolar disorder

TREMOLIZZO, LUCIO
Penultimo
;
2011

Abstract

It is becoming increasingly clear that a dysfunction of the GABAergic/glutamatergic network in telencephalic brain structures may be the pathogenetic mechanism underlying psychotic symptoms in schizophrenia (SZ) and bipolar (BP) disorder patients. Data obtained in Costa's laboratory (1996-2009) suggest that this dysfunction may be mediated primarily by a downregulation in the expression of GABAergic genes (e.g., glutamic acid decarboxylase 67 [GAD 67] and reelin) associated with DNA methyltransferase (DNMT)-dependent hypermethylation of their promoters. A pharmacological strategy to reduce the hypermethylation of GABAergic promoters is to administer drugs, such as the histone deacetylase (HDAC) inhibitor valproate (VPA), that induce DNA-demethylation when administered at doses that facilitate chromatin remodeling. The benefits elicited by combining VPA with antipsychotics in the treatment of BP disorder suggest that an investigation of the epigenetic interaction of these drugs is warranted. Our studies in mice suggest that when associated with VPA, clinically relevant doses of clozapine elicit a synergistic potentiation of VPA-induced GABAergic promoter demethylation. Olanzapine and quetiapine (two clozapine congeners) also facilitate chromatin remodeling but at doses higher than used clinically, whereas haloperidol and risperidone are inactive. Hence, the synergistic potentiation of VPA's action on chromatin remodeling by clozapine appears to be a unique property of the dibenzepines and is independent of their action on catecholamine or serotonin receptors. By activating DNA-demethylation, the association of clozapine or its derivatives with VPA or other more potent and selective HDAC inhibitors may be considered a promising treatment strategy for normalizing GABAergic promoter hypermethylation and the GABAergic gene expression downregulation detected in the postmortem brain of SZ and BP disorder patients. This article is part of a Special Issue entitled 'Trends in Neuropharmacology: In Memory of Erminio Costa'. © 2011 Elsevier Ltd. All rights reserved.
Articolo in rivista - Articolo scientifico
Chromatin; DNA-methyltransferase (DNMT); Glutamic acid decarboxylase 67 (GAD67); Histone deacetylase (HDAC); Promoter methylation; Valproic acid (VPA); Animals; Antipsychotic Agents; Bipolar Disorder; Epigenesis, Genetic; Excitatory Amino Acid Agents; Gene Expression; Humans; Interneurons; Mice; Molecular Targeted Therapy; Schizophrenia; gamma-Aminobutyric Acid; Cellular and Molecular Neuroscience; Pharmacology
English
2011
60
7-8
1007
1016
none
Guidotti, A., Auta, J., Chen, Y., Davis, J., Dong, E., Gavin, D., et al. (2011). Epigenetic GABAergic targets in schizophrenia and bipolar disorder. NEUROPHARMACOLOGY, 60(7-8), 1007-1016 [10.1016/j.neuropharm.2010.10.021].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/58765
Citazioni
  • Scopus 177
  • ???jsp.display-item.citation.isi??? 168
Social impact