Given a finite group G, we say that a subset C of G is power-closed if, for every x∈C and y∈⟨x⟩ with ⟨x⟩=⟨y⟩, we have y∈C. In this paper, we are interested in finite Cayley digraphs Cay(G,C) over G with connection set C, where C is a union of conjugacy classes of G. We show that each eigenvalue of Cay(G,C) is integral if and only if C is power-closed. This result will follow from a more general result.
Godsil, C., Spiga, P. (2025). Integral normal Cayley graphs. JOURNAL OF ALGEBRAIC COMBINATORICS, 62(1) [10.1007/s10801-025-01433-3].
Integral normal Cayley graphs
Spiga P.
2025
Abstract
Given a finite group G, we say that a subset C of G is power-closed if, for every x∈C and y∈⟨x⟩ with ⟨x⟩=⟨y⟩, we have y∈C. In this paper, we are interested in finite Cayley digraphs Cay(G,C) over G with connection set C, where C is a union of conjugacy classes of G. We show that each eigenvalue of Cay(G,C) is integral if and only if C is power-closed. This result will follow from a more general result.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
Godsil-2025-J Algebraic Combinatorics-VoR.pdf
accesso aperto
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Creative Commons
Dimensione
216.39 kB
Formato
Adobe PDF
|
216.39 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


