Given a finite group G, we say that a subset C of G is power-closed if, for every x∈C and y∈⟨x⟩ with ⟨x⟩=⟨y⟩, we have y∈C. In this paper, we are interested in finite Cayley digraphs Cay(G,C) over G with connection set C, where C is a union of conjugacy classes of G. We show that each eigenvalue of Cay(G,C) is integral if and only if C is power-closed. This result will follow from a more general result.

Godsil, C., Spiga, P. (2025). Integral normal Cayley graphs. JOURNAL OF ALGEBRAIC COMBINATORICS, 62(1) [10.1007/s10801-025-01433-3].

Integral normal Cayley graphs

Spiga P.
2025

Abstract

Given a finite group G, we say that a subset C of G is power-closed if, for every x∈C and y∈⟨x⟩ with ⟨x⟩=⟨y⟩, we have y∈C. In this paper, we are interested in finite Cayley digraphs Cay(G,C) over G with connection set C, where C is a union of conjugacy classes of G. We show that each eigenvalue of Cay(G,C) is integral if and only if C is power-closed. This result will follow from a more general result.
Articolo in rivista - Articolo scientifico
Conjugacy classes; Eigenvalues; Irreducible characters;
English
4-ago-2025
2025
62
1
20
open
Godsil, C., Spiga, P. (2025). Integral normal Cayley graphs. JOURNAL OF ALGEBRAIC COMBINATORICS, 62(1) [10.1007/s10801-025-01433-3].
File in questo prodotto:
File Dimensione Formato  
Godsil-2025-J Algebraic Combinatorics-VoR.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 216.39 kB
Formato Adobe PDF
216.39 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/580744
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
Social impact