We prove that, if Γ is a finite connected cubic vertex-transitive graph, then either there exists a semiregular automorphism of Γ of order at least 6, or the number of vertices of Γ is bounded above by an absolute constant.
Barbieri, M., Grazian, V., Spiga, P. (2025). On the order of semiregular automorphisms of cubic vertex-transitive graphs. EUROPEAN JOURNAL OF COMBINATORICS, 124(February 2025) [10.1016/j.ejc.2024.104091].
On the order of semiregular automorphisms of cubic vertex-transitive graphs
Spiga P.
2025
Abstract
We prove that, if Γ is a finite connected cubic vertex-transitive graph, then either there exists a semiregular automorphism of Γ of order at least 6, or the number of vertices of Γ is bounded above by an absolute constant.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
Barbieri-2025-Eur J Combinatorics-VoR.pdf
accesso aperto
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Creative Commons
Dimensione
527.13 kB
Formato
Adobe PDF
|
527.13 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


