We introduce the Grassmannian q-core of a distribution of subspaces of the tangent bundle of a smooth manifold. This is a generalization of the concept of the core previously introduced by the first two authors. In the case where the distribution is the Levi null distribution of a smooth bounded pseudoconvex domain Ω⊆Cn, we prove that for 1≤q≤n, the support of the Grassmannian q-core satisfies Property (Pq) if and only if the boundary of Ω satisfies Property (Pq). This generalizes a previous result of the third author in the case q=1. The notion of the Grassmannian q-core offers a perspective on certain generalized stratifications appearing in a recent work of Zaitsev.

Dall'Ara, G., Mongodi, S., Treuer, J. (2025). The Levi q-core and Property (Pq). THE JOURNAL OF GEOMETRIC ANALYSIS, 35(12) [10.1007/s12220-025-02222-x].

The Levi q-core and Property (Pq)

Mongodi S.;
2025

Abstract

We introduce the Grassmannian q-core of a distribution of subspaces of the tangent bundle of a smooth manifold. This is a generalization of the concept of the core previously introduced by the first two authors. In the case where the distribution is the Levi null distribution of a smooth bounded pseudoconvex domain Ω⊆Cn, we prove that for 1≤q≤n, the support of the Grassmannian q-core satisfies Property (Pq) if and only if the boundary of Ω satisfies Property (Pq). This generalizes a previous result of the third author in the case q=1. The notion of the Grassmannian q-core offers a perspective on certain generalized stratifications appearing in a recent work of Zaitsev.
Articolo in rivista - Articolo scientifico
Compactness; Levi core; Property (P; q; ); ∂¯-Neumann problem;
English
15-ott-2025
2025
35
12
391
reserved
Dall'Ara, G., Mongodi, S., Treuer, J. (2025). The Levi q-core and Property (Pq). THE JOURNAL OF GEOMETRIC ANALYSIS, 35(12) [10.1007/s12220-025-02222-x].
File in questo prodotto:
File Dimensione Formato  
Dall Ara-2025-J Geometric Analysis-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 321.2 kB
Formato Adobe PDF
321.2 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/577121
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
Social impact