We prove the existence of local minimizers for a critical problem involving a superposition operator of mixed fractional order recently introduced in [S. Dipierro, K. Perera, C. Sportelli and E. Valdinoci, An existence theory for superposition operators of mixed order subject to jumping nonlinearities, Nonlinearity 37(5) (2024) 055018]. Our approach extends a result from [G. M. Bisci, D. Repovš and L. Vilasi, Existence results for some problems on Riemannian manifolds, Commun. Anal. Geom. 28(3) (2020) 677–706] to this framework.

Bisci, G., Malanchini, P., Secchi, S. (2025). Existence of local minimizers for a critical problem involving a superposition operator of mixed fractional order. BULLETIN OF MATHEMATICAL SCIENCES [10.1142/S1664360725500158].

Existence of local minimizers for a critical problem involving a superposition operator of mixed fractional order

Malanchini P.;Secchi S.
2025

Abstract

We prove the existence of local minimizers for a critical problem involving a superposition operator of mixed fractional order recently introduced in [S. Dipierro, K. Perera, C. Sportelli and E. Valdinoci, An existence theory for superposition operators of mixed order subject to jumping nonlinearities, Nonlinearity 37(5) (2024) 055018]. Our approach extends a result from [G. M. Bisci, D. Repovš and L. Vilasi, Existence results for some problems on Riemannian manifolds, Commun. Anal. Geom. 28(3) (2020) 677–706] to this framework.
Articolo in rivista - Articolo scientifico
critical exponent; local minimization; Mixed fractional order;
English
2-ago-2025
2025
2550015
none
Bisci, G., Malanchini, P., Secchi, S. (2025). Existence of local minimizers for a critical problem involving a superposition operator of mixed fractional order. BULLETIN OF MATHEMATICAL SCIENCES [10.1142/S1664360725500158].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/576065
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
Social impact