We present two involutivity theorems in the context of Poisson quasi-Nijenhuis manifolds. The second one stems from recursion relations that generalize the so-called Lenard–Magri relations on a bi-Hamiltonian manifold. We apply these results to the closed (or periodic) Toda lattices of type An(1), Cn(1), A2n(2), and, for the ones of type An(1), we show how this geometrical setting relates to their bi-Hamiltonian representation and to their recursion relations.
Vizarreta, E., Falqui, G., Mencattini, I., Pedroni, M. (2025). Poisson quasi-Nijenhuis manifolds, closed Toda lattices, and generalized recursion relations. LETTERS IN MATHEMATICAL PHYSICS, 115(4) [10.1007/s11005-025-01970-9].
Poisson quasi-Nijenhuis manifolds, closed Toda lattices, and generalized recursion relations
Falqui G.;
2025
Abstract
We present two involutivity theorems in the context of Poisson quasi-Nijenhuis manifolds. The second one stems from recursion relations that generalize the so-called Lenard–Magri relations on a bi-Hamiltonian manifold. We apply these results to the closed (or periodic) Toda lattices of type An(1), Cn(1), A2n(2), and, for the ones of type An(1), we show how this geometrical setting relates to their bi-Hamiltonian representation and to their recursion relations.| File | Dimensione | Formato | |
|---|---|---|---|
|
Vizarreta-2025-Lett Math Phys-VoR.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
365.66 kB
Formato
Adobe PDF
|
365.66 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
Vizarreta-2025-Lett Math Phys-AAM.pdf
embargo fino al 26/07/2026
Tipologia di allegato:
Author’s Accepted Manuscript, AAM (Post-print)
Licenza:
Licenza open access specifica dell’editore
Dimensione
285.2 kB
Formato
Adobe PDF
|
285.2 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


