We present two involutivity theorems in the context of Poisson quasi-Nijenhuis manifolds. The second one stems from recursion relations that generalize the so-called Lenard–Magri relations on a bi-Hamiltonian manifold. We apply these results to the closed (or periodic) Toda lattices of type An(1), Cn(1), A2n(2), and, for the ones of type An(1), we show how this geometrical setting relates to their bi-Hamiltonian representation and to their recursion relations.

Vizarreta, E., Falqui, G., Mencattini, I., Pedroni, M. (2025). Poisson quasi-Nijenhuis manifolds, closed Toda lattices, and generalized recursion relations. LETTERS IN MATHEMATICAL PHYSICS, 115(4) [10.1007/s11005-025-01970-9].

Poisson quasi-Nijenhuis manifolds, closed Toda lattices, and generalized recursion relations

Falqui G.;
2025

Abstract

We present two involutivity theorems in the context of Poisson quasi-Nijenhuis manifolds. The second one stems from recursion relations that generalize the so-called Lenard–Magri relations on a bi-Hamiltonian manifold. We apply these results to the closed (or periodic) Toda lattices of type An(1), Cn(1), A2n(2), and, for the ones of type An(1), we show how this geometrical setting relates to their bi-Hamiltonian representation and to their recursion relations.
Articolo in rivista - Articolo scientifico
Bi-Hamiltonian manifolds; Flaschka coordinates; Integrable systems; Poisson quasi-Nijenhuis manifolds; Toda lattices;
English
26-lug-2025
2025
115
4
84
mixed
Vizarreta, E., Falqui, G., Mencattini, I., Pedroni, M. (2025). Poisson quasi-Nijenhuis manifolds, closed Toda lattices, and generalized recursion relations. LETTERS IN MATHEMATICAL PHYSICS, 115(4) [10.1007/s11005-025-01970-9].
File in questo prodotto:
File Dimensione Formato  
Vizarreta-2025-Lett Math Phys-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 365.66 kB
Formato Adobe PDF
365.66 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Vizarreta-2025-Lett Math Phys-AAM.pdf

embargo fino al 26/07/2026

Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Licenza: Licenza open access specifica dell’editore
Dimensione 285.2 kB
Formato Adobe PDF
285.2 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/574065
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
Social impact