Repulsive mixture models have recently gained visibility in Bayesian statistics. In such models, a finite repulsive point process is assumed as prior distribution for the number of components and component-specific parameters. We assume a determinantal point process as such prior, proposing a simple construction of anisotropic determinantal point processes, that can better characterize repulsion when data have different scales along the axes. In turn, this produces better cluster estimates. We discuss the model on simulated data.

Ghilotti, L., Beraha, M., Guglielmi, A. (2021). Anisotropic determinantal point processes and their application in Bayesian mixtures. In Book of Short Papers SIS 2021 (pp.1226-1231). Pearson.

Anisotropic determinantal point processes and their application in Bayesian mixtures

Ghilotti, L;Beraha, M;
2021

Abstract

Repulsive mixture models have recently gained visibility in Bayesian statistics. In such models, a finite repulsive point process is assumed as prior distribution for the number of components and component-specific parameters. We assume a determinantal point process as such prior, proposing a simple construction of anisotropic determinantal point processes, that can better characterize repulsion when data have different scales along the axes. In turn, this produces better cluster estimates. We discuss the model on simulated data.
paper
repulsive mixture models, determinantal point processes, anisotropic covariance function, spectral density
English
50th Meeting of the Italian Statistical Society - SIS2021
2021
Perna, C; Salvati, N; Schirripa Spagnolo, F
Book of Short Papers SIS 2021
9788891927361
2021
1226
1231
https://it.pearson.com//docenti/universita/partnership/sis.html
reserved
Ghilotti, L., Beraha, M., Guglielmi, A. (2021). Anisotropic determinantal point processes and their application in Bayesian mixtures. In Book of Short Papers SIS 2021 (pp.1226-1231). Pearson.
File in questo prodotto:
File Dimensione Formato  
Ghilotti-2021-50 Meet Ita Stat Soc-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 5.59 MB
Formato Adobe PDF
5.59 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/570761
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact