Latin Hypercube Sampling (LHS) is a prominent tool in simulation design, with a variety of applications in high-dimensional and computationally expensive problems. LHS allows for various optimization strategies, most notably to ensure space-filling properties. However, LHS is a single-stage algorithm that requires a priori knowledge of the targeted sample size. In this work, we present “LHS in LHS,” a new expansion algorithm for LHS that enables the addition of new samples to an existing LHS-distributed set while (approximately) preserving its properties. In summary, the algorithm identifies regions of the parameter space that are far from the initial set, draws a new LHS within those regions, and then merges it with the original samples. As a by-product, we introduce a new metric, the LHS degree, which quantifies the deviation of a given design from an LHS distribution. Our public implementation is distributed via the Python package EXPANDLHS.
Boschini, M., Gerosa, D., Crespi, A., Falcone, M. (2025). “LHS in LHS”: A new expansion strategy for Latin hypercube sampling in simulation design. SOFTWAREX, 31(September 2025) [10.1016/j.softx.2025.102294].
“LHS in LHS”: A new expansion strategy for Latin hypercube sampling in simulation design
Matteo Boschini
;Davide Gerosa;
2025
Abstract
Latin Hypercube Sampling (LHS) is a prominent tool in simulation design, with a variety of applications in high-dimensional and computationally expensive problems. LHS allows for various optimization strategies, most notably to ensure space-filling properties. However, LHS is a single-stage algorithm that requires a priori knowledge of the targeted sample size. In this work, we present “LHS in LHS,” a new expansion algorithm for LHS that enables the addition of new samples to an existing LHS-distributed set while (approximately) preserving its properties. In summary, the algorithm identifies regions of the parameter space that are far from the initial set, draws a new LHS within those regions, and then merges it with the original samples. As a by-product, we introduce a new metric, the LHS degree, which quantifies the deviation of a given design from an LHS distribution. Our public implementation is distributed via the Python package EXPANDLHS.| File | Dimensione | Formato | |
|---|---|---|---|
|
Boschini et al-2025-SoftwareX-VoR.pdf
accesso aperto
Descrizione: This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Creative Commons
Dimensione
1.04 MB
Formato
Adobe PDF
|
1.04 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


