We consider the p-system in Eulerian coordinates on a star-shaped network. Under suitable transmission conditions at the junction and dissipative boundary conditions at the exterior vertices, we show that the entropy solutions of the system are exponentially stabilizable. Our proof extends the strategy by Coron et al. (2017) and is based on a front-tracking algorithm used to construct approximate piecewise constant solutions whose BV norms are controlled through a suitable exponentially-weighted Glimm-type Lyapunov functional.

Coclite, G., De Nitti, N., Garavello, M., Marcellini, F. (2026). Feedback stabilization for entropy solutions of a 2 × 2 hyperbolic system of conservation laws at a junction. JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES, 205(January 2026) [10.1016/j.matpur.2025.103774].

Feedback stabilization for entropy solutions of a 2 × 2 hyperbolic system of conservation laws at a junction

Garavello M.;
2026

Abstract

We consider the p-system in Eulerian coordinates on a star-shaped network. Under suitable transmission conditions at the junction and dissipative boundary conditions at the exterior vertices, we show that the entropy solutions of the system are exponentially stabilizable. Our proof extends the strategy by Coron et al. (2017) and is based on a front-tracking algorithm used to construct approximate piecewise constant solutions whose BV norms are controlled through a suitable exponentially-weighted Glimm-type Lyapunov functional.
Articolo in rivista - Articolo scientifico
BV exponential stabilization; Entropy solutions; Gas transport; Hyperbolic systems of conservation laws; Junction conditions; Networks;
English
18-lug-2025
2026
205
January 2026
103774
partially_open
Coclite, G., De Nitti, N., Garavello, M., Marcellini, F. (2026). Feedback stabilization for entropy solutions of a 2 × 2 hyperbolic system of conservation laws at a junction. JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES, 205(January 2026) [10.1016/j.matpur.2025.103774].
File in questo prodotto:
File Dimensione Formato  
Coclite-2026-arXiv-preprint.pdf

accesso aperto

Tipologia di allegato: Submitted Version (Pre-print)
Licenza: Creative Commons
Dimensione 330.64 kB
Formato Adobe PDF
330.64 kB Adobe PDF Visualizza/Apri
Coclite-2026-J Math Pures Appl-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 971.44 kB
Formato Adobe PDF
971.44 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/569261
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
Social impact