Introduction Labeled nanoparticles can be monitored in the body using positron emission tomography (PET) imaging, providing real-time insights into their pharmacokinetics and biodistribution. In the present work, liposomes are labeled with the radionuclide fluorine-18, exploiting a "surface radiolabeling" approach.Methods Two alkyne-dioleoylphosphatidylethanolamine (DOPE) constructs are embedded within the bulk of the liposome bilayer, which is composed of cholesterol (Ch) and sphingomyelin (SM), and radiolabeling is performed via either a copper(I)-catalyzed cycloaddition "click" reaction (CuAAC) or a cyclooctyne-driven copper-free "click" reaction (CyOctC) modality, using a suitable fluorine-18 labeled azide, obtaining good results in terms of yield, purity, stability, and automation of the entire radiosynthesis process. In addition, radiolabeling is also performed on liposome formulations functionalized with 1) a peptide derived from the receptor-binding domain of apolipoprotein E (mApoE) and 2) a metalloproteinase (MMP)-sensitive lipopeptide (MSLP). The in vivo uptake of these liposomes is evaluated in an orthotopic glioma mouse model (Gli36 Delta EGFR cell line) using PET/computed tomography (CT).Results and discussion The results demonstrate a higher tumor/background ratio, a faster clearance rate, and a lower uptake in healthy brain tissue and peripheral regions for mApoE- and MSLP-functionalized liposomes than for non-functionalized liposomes, prompting further characterization. On the contrary, radiolabeled liposome uptake is higher in the majority of peripheral organs for non-functionalized liposomes. Hence, fluorine-18-labeled liposomes can be reliably used for in vivo PET tracking of multifunctionalized nanoparticles, enabling effective investigation of their potential as drug delivery systems.
Iannone, M., Kravicz, M., Rainone, P., Antoniou, A., Stucchi, S., Valtorta, S., et al. (2025). Automated fluorine-18 radiolabeling via an alkyne–azide cycloaddition reaction on a dual peptide-functionalized liposome surface for in vivo PET imaging. FRONTIERS IN PHARMACOLOGY, 16 [10.3389/fphar.2025.1566257].
Automated fluorine-18 radiolabeling via an alkyne–azide cycloaddition reaction on a dual peptide-functionalized liposome surface for in vivo PET imaging
Iannone M.;Kravicz M.;Rainone P.;Turolla E. A.;Todde S.;Re F.;Moresco R. M.
2025
Abstract
Introduction Labeled nanoparticles can be monitored in the body using positron emission tomography (PET) imaging, providing real-time insights into their pharmacokinetics and biodistribution. In the present work, liposomes are labeled with the radionuclide fluorine-18, exploiting a "surface radiolabeling" approach.Methods Two alkyne-dioleoylphosphatidylethanolamine (DOPE) constructs are embedded within the bulk of the liposome bilayer, which is composed of cholesterol (Ch) and sphingomyelin (SM), and radiolabeling is performed via either a copper(I)-catalyzed cycloaddition "click" reaction (CuAAC) or a cyclooctyne-driven copper-free "click" reaction (CyOctC) modality, using a suitable fluorine-18 labeled azide, obtaining good results in terms of yield, purity, stability, and automation of the entire radiosynthesis process. In addition, radiolabeling is also performed on liposome formulations functionalized with 1) a peptide derived from the receptor-binding domain of apolipoprotein E (mApoE) and 2) a metalloproteinase (MMP)-sensitive lipopeptide (MSLP). The in vivo uptake of these liposomes is evaluated in an orthotopic glioma mouse model (Gli36 Delta EGFR cell line) using PET/computed tomography (CT).Results and discussion The results demonstrate a higher tumor/background ratio, a faster clearance rate, and a lower uptake in healthy brain tissue and peripheral regions for mApoE- and MSLP-functionalized liposomes than for non-functionalized liposomes, prompting further characterization. On the contrary, radiolabeled liposome uptake is higher in the majority of peripheral organs for non-functionalized liposomes. Hence, fluorine-18-labeled liposomes can be reliably used for in vivo PET tracking of multifunctionalized nanoparticles, enabling effective investigation of their potential as drug delivery systems.| File | Dimensione | Formato | |
|---|---|---|---|
|
fphar-1-1566257.pdf
accesso aperto
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Creative Commons
Dimensione
2.04 MB
Formato
Adobe PDF
|
2.04 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


