Let E ⊇ F be a field extension and M a graded Lie algebra of maximal class over E. We investigate the F -subalgebras L of M , generated by elements of degree 1 . We provide conditions for L being either ideally r -constrained or not just infinite. We show by an example that those conditions are tight. Furthermore, we determine the structure of L when the field extension E ⊇ F is finite. A class of ideally r -constrained Lie algebras which are not (r − 1)-constrained is explicitly constructed, for every r ≥ 1.

Avitabile, M., Gavioli, N., Monti, V. (2025). Ideally r-Constrained Graded Lie Subalgebras of Maximal Class Algebras. JOURNAL OF LIE THEORY, 35(2), 411-418.

Ideally r-Constrained Graded Lie Subalgebras of Maximal Class Algebras

Avitabile, M;
2025

Abstract

Let E ⊇ F be a field extension and M a graded Lie algebra of maximal class over E. We investigate the F -subalgebras L of M , generated by elements of degree 1 . We provide conditions for L being either ideally r -constrained or not just infinite. We show by an example that those conditions are tight. Furthermore, we determine the structure of L when the field extension E ⊇ F is finite. A class of ideally r -constrained Lie algebras which are not (r − 1)-constrained is explicitly constructed, for every r ≥ 1.
Articolo in rivista - Articolo scientifico
graded Lie algebras; Ideally r-constrained Lie algebras; just-infinite dimensional Lie algebras; Lie algebras of maximal class; thin algebras;
English
giu-2025
2025
35
2
411
418
open
Avitabile, M., Gavioli, N., Monti, V. (2025). Ideally r-Constrained Graded Lie Subalgebras of Maximal Class Algebras. JOURNAL OF LIE THEORY, 35(2), 411-418.
File in questo prodotto:
File Dimensione Formato  
Avitabile et al-2025-Journal of Lie Theory-VoR.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Non specificato
Dimensione 111.05 kB
Formato Adobe PDF
111.05 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/568223
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
Social impact