We show how to construct the Hamiltonian structures of any reduction of the Benney chain (dispersionless KP). The construction follows the scheme suggested by Ferapontov, leading in general to nonlocal Hamiltonian structures. In some special cases these reduce to local structures. All the geometric objects which define the Poisson bracket, the metric, connection and Riemann curvature, are obtained explicitly, in terms of the n-parameter family of conformal maps associated with the reduction. © 2008 Springer-Verlag.
Citazione: | Gibbons, J., Lorenzoni, P., & Raimondo, A. (2009). Hamiltonian structures of reductions of the Benney system. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 287(1), 291-322. |
Tipo: | Articolo in rivista - Articolo scientifico |
Carattere della pubblicazione: | Scientifica |
Presenza di un coautore afferente ad Istituzioni straniere: | Si |
Titolo: | Hamiltonian structures of reductions of the Benney system |
Autori: | Gibbons, J; Lorenzoni, P; Raimondo, A |
Autori: | |
Data di pubblicazione: | 2009 |
Lingua: | English |
Rivista: | COMMUNICATIONS IN MATHEMATICAL PHYSICS |
Digital Object Identifier (DOI): | 10.1007/s00220-008-0686-z |
Appare nelle tipologie: | 01 - Articolo su rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.