The space industry has made significant strides, leading to an era of commercial spaceflight. Meanwhile, understanding molecular responses to spaceflight is crucial for astronauts' safety. To this end, we examined transcriptomic and epigenetic changes in two astronauts' blood samples at three timepoints: two weeks before spaceflight (T0), 24 hours after spaceflight (T2), and three months after spaceflight (T3). Transcriptomic analysis identified two gene clusters with opposing transient expression trends post-flight (T2), normalized at T3: one upregulated and the other downregulated. Mapped immune cell types through the CIBERSORT coupled with the pathway analysis suggested monocytes' role in coordinated cellular response. Epigenetic analysis identified four methylation patterns with transient and persistent changes post-flight, enriched in nervous system development and cell apoptosis pathways. Methylation changes implicated genes associated with bone disorders, including FBLIM1, IHH, and SCAMP2. eQTM analysis suggested a link between RNA transcriptional level and DNA methylation through transcriptional regulator ZNF684. In conclusion, our study revealed significant short-term transcriptional and methylation changes as well as long-term methylation changes.

Ao, X., Parisien, M., Cata, J., Montagna, F., Vigouroux, M., Oliveira Fernandes De Araujo, L., et al. (2025). Longitudinal transcriptomic and epigenetic analysis of the blood in two astronauts. SCIENTIFIC REPORTS, 15(1) [10.1038/s41598-025-13383-8].

Longitudinal transcriptomic and epigenetic analysis of the blood in two astronauts

Ingelmo P.;
2025

Abstract

The space industry has made significant strides, leading to an era of commercial spaceflight. Meanwhile, understanding molecular responses to spaceflight is crucial for astronauts' safety. To this end, we examined transcriptomic and epigenetic changes in two astronauts' blood samples at three timepoints: two weeks before spaceflight (T0), 24 hours after spaceflight (T2), and three months after spaceflight (T3). Transcriptomic analysis identified two gene clusters with opposing transient expression trends post-flight (T2), normalized at T3: one upregulated and the other downregulated. Mapped immune cell types through the CIBERSORT coupled with the pathway analysis suggested monocytes' role in coordinated cellular response. Epigenetic analysis identified four methylation patterns with transient and persistent changes post-flight, enriched in nervous system development and cell apoptosis pathways. Methylation changes implicated genes associated with bone disorders, including FBLIM1, IHH, and SCAMP2. eQTM analysis suggested a link between RNA transcriptional level and DNA methylation through transcriptional regulator ZNF684. In conclusion, our study revealed significant short-term transcriptional and methylation changes as well as long-term methylation changes.
Articolo in rivista - Articolo scientifico
Immune response; Microgravity; Multi-omics; Space radiation;
English
26-lug-2025
2025
15
1
27175
open
Ao, X., Parisien, M., Cata, J., Montagna, F., Vigouroux, M., Oliveira Fernandes De Araujo, L., et al. (2025). Longitudinal transcriptomic and epigenetic analysis of the blood in two astronauts. SCIENTIFIC REPORTS, 15(1) [10.1038/s41598-025-13383-8].
File in questo prodotto:
File Dimensione Formato  
Ao et al-2025-Scientific Reports-VoR.pdf

accesso aperto

Descrizione: This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 1.62 MB
Formato Adobe PDF
1.62 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/567581
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
Social impact