Neutrino oscillations constitute an excellent tool to probe physics beyond the Standard Model. In this paper, we investigate the potential of the ESSnuSB experiment to constrain the effects of flavour-dependent long-range forces (LRFs) in neutrino oscillations, which may arise due to the extension of the Standard Model gauge group by introducing new U(1) symmetries. Focusing on three specific U(1) symmetries — Le − Lμ, Le − Lτ, and Lμ − Lτ, we demonstrate that ESSnuSB offers a favourable environment to search for LRF effects. Our analyses reveal that ESSnuSB can set 90% confidence level bounds of Veμ < 2.99 × 10−14 eV, Veτ < 2.05 × 10−14 eV, and Vμτ < 1.81 × 10−14 eV, which are competitive to the upcoming Deep Underground Neutrino Experiment (DUNE). It is also observed that reducing the systematic uncertainties from 5% to 2% improves the ESSnuSB limits on Vαβ. Interestingly, we find limited correlations between LRF parameters and the less constrained lepton mixing parameters θ23 and δCP, preserving the robustness of ESSnuSB’s sensitivity to CP violation. Even under extreme LRF potentials (Vαβ ≫ 10−13 eV), the CP-violation sensitivity and δCP precision remain largely unaffected. These results establish ESSnuSB as a competitive experimental setup for probing LRF effects, complementing constraints from other neutrino sources and offering critical insights into the physics of long-range forces.

Aguilar, J., Anastasopoulos, M., Barčot, D., Baussan, E., Bhattacharyya, A., Bignami, A., et al. (2025). Probing long-range forces in neutrino oscillations at the ESSnuSB experiment. JOURNAL OF HIGH ENERGY PHYSICS, 2025(7) [10.1007/JHEP07(2025)186].

Probing long-range forces in neutrino oscillations at the ESSnuSB experiment

Bramati F.;Branca A.;Cristaldo Morales E.;Scanu A.;Terranova F.;
2025

Abstract

Neutrino oscillations constitute an excellent tool to probe physics beyond the Standard Model. In this paper, we investigate the potential of the ESSnuSB experiment to constrain the effects of flavour-dependent long-range forces (LRFs) in neutrino oscillations, which may arise due to the extension of the Standard Model gauge group by introducing new U(1) symmetries. Focusing on three specific U(1) symmetries — Le − Lμ, Le − Lτ, and Lμ − Lτ, we demonstrate that ESSnuSB offers a favourable environment to search for LRF effects. Our analyses reveal that ESSnuSB can set 90% confidence level bounds of Veμ < 2.99 × 10−14 eV, Veτ < 2.05 × 10−14 eV, and Vμτ < 1.81 × 10−14 eV, which are competitive to the upcoming Deep Underground Neutrino Experiment (DUNE). It is also observed that reducing the systematic uncertainties from 5% to 2% improves the ESSnuSB limits on Vαβ. Interestingly, we find limited correlations between LRF parameters and the less constrained lepton mixing parameters θ23 and δCP, preserving the robustness of ESSnuSB’s sensitivity to CP violation. Even under extreme LRF potentials (Vαβ ≫ 10−13 eV), the CP-violation sensitivity and δCP precision remain largely unaffected. These results establish ESSnuSB as a competitive experimental setup for probing LRF effects, complementing constraints from other neutrino sources and offering critical insights into the physics of long-range forces.
Articolo in rivista - Articolo scientifico
Neutrino Interactions; Neutrino Mixing; Non-Standard Neutrino Properties;
English
16-lug-2025
2025
2025
7
186
open
Aguilar, J., Anastasopoulos, M., Barčot, D., Baussan, E., Bhattacharyya, A., Bignami, A., et al. (2025). Probing long-range forces in neutrino oscillations at the ESSnuSB experiment. JOURNAL OF HIGH ENERGY PHYSICS, 2025(7) [10.1007/JHEP07(2025)186].
File in questo prodotto:
File Dimensione Formato  
Aguilar et al-2025-Journal of High Energy Physics-VoR.pdf

accesso aperto

Descrizione: This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0)
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 1.19 MB
Formato Adobe PDF
1.19 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/566184
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
Social impact