In this paper, we extend the notion of Futaki invariant to big and nef classes in such a way that it defines a continuous function on the Kähler cone up to the boundary. We apply this concept to prove that reduced normal crossing singularities are sufficient to check K-semistability. A similar improvement on Donaldson's lower bound for the Calabi energy is given. © The Author(s) 2011

Arezzo, C., DELLA VEDOVA, A., La Nave, G. (2012). Singularities and K-semistability. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2012(4), 849-869 [10.1093/imrn/rnr044].

Singularities and K-semistability

DELLA VEDOVA, ALBERTO;
2012

Abstract

In this paper, we extend the notion of Futaki invariant to big and nef classes in such a way that it defines a continuous function on the Kähler cone up to the boundary. We apply this concept to prove that reduced normal crossing singularities are sufficient to check K-semistability. A similar improvement on Donaldson's lower bound for the Calabi energy is given. © The Author(s) 2011
Articolo in rivista - Articolo scientifico
Mathematics (all)
English
2012
2012
4
849
869
none
Arezzo, C., DELLA VEDOVA, A., La Nave, G. (2012). Singularities and K-semistability. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2012(4), 849-869 [10.1093/imrn/rnr044].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/56502
Citazioni
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
Social impact