Rock and debris avalanches, as well as debris flows, are characterized by peculiar behaviour influenced by geometry of the initial failure surface, topography, involved materials involved and water content. During their motion rock avalanches can entrain large volumes of sediments both in a dry and in a saturated state. Entrained dry material has generally the consequence to reduce the total landslide runout, whereas entrainment of almost saturated material can have more complex consequences. We use a finite element code to simulate the motion of a moving landslide mass on materials with different properties and along very sharp topographies. Erosion and deposition can be modelled as well as interaction with obstacles of different characteristics. We present two examples of the modelling problems and capabilities. We simulated the runout of a rock avalanche on a ground formed by alluvial material under dry and saturated conditions. This material can be entrained and plowed by the impacting and running rock avalanche material. Sensitivity of the erosion and transport mechanisms has been analysed by performing different analyses. The simulated case study is the 6 105 m3 Arvel rock-avalanche (1922, Switzerland) for which a reliable set of pre- and post-failure observations is available. Final geometry, mass redistribution, velocities and runup are used to validate the model capabilities and study the effects of different material properties.

Crosta, G., Imposimato, S., Roddeman, D. (2009). Numerical modelling of entrainment/deposition in rock and debris-avalanches. ENGINEERING GEOLOGY, 109(1-2), 135-145 [10.1016/j.enggeo.2008.10.004].

Numerical modelling of entrainment/deposition in rock and debris-avalanches

CROSTA, GIOVANNI;
2009

Abstract

Rock and debris avalanches, as well as debris flows, are characterized by peculiar behaviour influenced by geometry of the initial failure surface, topography, involved materials involved and water content. During their motion rock avalanches can entrain large volumes of sediments both in a dry and in a saturated state. Entrained dry material has generally the consequence to reduce the total landslide runout, whereas entrainment of almost saturated material can have more complex consequences. We use a finite element code to simulate the motion of a moving landslide mass on materials with different properties and along very sharp topographies. Erosion and deposition can be modelled as well as interaction with obstacles of different characteristics. We present two examples of the modelling problems and capabilities. We simulated the runout of a rock avalanche on a ground formed by alluvial material under dry and saturated conditions. This material can be entrained and plowed by the impacting and running rock avalanche material. Sensitivity of the erosion and transport mechanisms has been analysed by performing different analyses. The simulated case study is the 6 105 m3 Arvel rock-avalanche (1922, Switzerland) for which a reliable set of pre- and post-failure observations is available. Final geometry, mass redistribution, velocities and runup are used to validate the model capabilities and study the effects of different material properties.
Articolo in rivista - Articolo scientifico
Rock avalanche; Debris avalanche; Erosion; Entrainment; Numerical modelling
English
2009
109
1-2
135
145
none
Crosta, G., Imposimato, S., Roddeman, D. (2009). Numerical modelling of entrainment/deposition in rock and debris-avalanches. ENGINEERING GEOLOGY, 109(1-2), 135-145 [10.1016/j.enggeo.2008.10.004].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/5632
Citazioni
  • Scopus 168
  • ???jsp.display-item.citation.isi??? 114
Social impact