Ocean acidification can have profound effects on marine organisms, particularly those that rely on calcium carbonate for shell and skeleton formation, resulting in structural changes to marine ecosystems. Here, we contrast the structure of marine mollusc communities (epifauna) associated with an abundant shallow-water macroalga, Halopteris scoparia, in an area with seawater carbonated by natural CO2 seeps and three reference sites, off the Azores archipelago. Epifaunal mollusc abundance and diversity were significantly lower at the CO2 seep compared to reference sites whilst species accumulation curves and Jaccard multivariate analyses showed that the mollusc assemblage was consistently less diverse at the CO2 seep. Most of the abundant epifaunal species that were present at the CO2 seep were also found at reference sites, but less common or rare species were generally absent from the former. We conclude that while some molluscs are likely to cope with ocean acidification, the overall biodiversity of epifaunal molluscs will be simplified under these conditions in a future ocean.
Martins, G., Herrero, J., Canella, C., Ávila, S., Prestes, A., Barcelos E Ramos, J., et al. (2025). Mollusc epifaunal assemblages are simplified due to habitat shifts under ocean acidification. ESTUARINE, COASTAL AND SHELF SCIENCE, 323(30 September 2025) [10.1016/j.ecss.2025.109422].
Mollusc epifaunal assemblages are simplified due to habitat shifts under ocean acidification
Canella, C;
2025
Abstract
Ocean acidification can have profound effects on marine organisms, particularly those that rely on calcium carbonate for shell and skeleton formation, resulting in structural changes to marine ecosystems. Here, we contrast the structure of marine mollusc communities (epifauna) associated with an abundant shallow-water macroalga, Halopteris scoparia, in an area with seawater carbonated by natural CO2 seeps and three reference sites, off the Azores archipelago. Epifaunal mollusc abundance and diversity were significantly lower at the CO2 seep compared to reference sites whilst species accumulation curves and Jaccard multivariate analyses showed that the mollusc assemblage was consistently less diverse at the CO2 seep. Most of the abundant epifaunal species that were present at the CO2 seep were also found at reference sites, but less common or rare species were generally absent from the former. We conclude that while some molluscs are likely to cope with ocean acidification, the overall biodiversity of epifaunal molluscs will be simplified under these conditions in a future ocean.| File | Dimensione | Formato | |
|---|---|---|---|
|
Martins et al-2025-Estuarine, Coastal and Shelf Science-VoR.pdf
accesso aperto
Descrizione: This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/bync-nd/4.0/).
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Creative Commons
Dimensione
2.48 MB
Formato
Adobe PDF
|
2.48 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


