We present a three-step likelihood inference approach for the analysis of multidimensional longitudinal data when a large number of response variables are collected at each time occasion. We show the results obtained using this method to identify patients with different levels of Myasthenia Gravis severity and assess symptom progression over time.

Brusa, L., Pennoni, F., Bartolucci, F., Maggi, L. (2025). Dynamic Classification through Three-Step Estimation: Evidence from a Multinational Longitudinal Study of Myasthenia Gravis Patients. In E. di Bella, V. Gioia, C. Lagazio, S. Zaccarin (a cura di), Statistics for Innovation II. SIS 2025, Short Papers, Contributed Sessions 1 (pp. 270-276). Springer [10.1007/978-3-031-96303-2_44].

Dynamic Classification through Three-Step Estimation: Evidence from a Multinational Longitudinal Study of Myasthenia Gravis Patients

Brusa, L
;
Pennoni, F;
2025

Abstract

We present a three-step likelihood inference approach for the analysis of multidimensional longitudinal data when a large number of response variables are collected at each time occasion. We show the results obtained using this method to identify patients with different levels of Myasthenia Gravis severity and assess symptom progression over time.
Capitolo o saggio
Hidden Markov models, Likelihood inference, Multidimensional latent class item response models, Observational study
English
Statistics for Innovation II. SIS 2025, Short Papers, Contributed Sessions 1
di Bella, E; Gioia, V; Lagazio, C; Zaccarin, S
16-giu-2025
2025
9783031963025
Springer
270
276
Brusa, L., Pennoni, F., Bartolucci, F., Maggi, L. (2025). Dynamic Classification through Three-Step Estimation: Evidence from a Multinational Longitudinal Study of Myasthenia Gravis Patients. In E. di Bella, V. Gioia, C. Lagazio, S. Zaccarin (a cura di), Statistics for Innovation II. SIS 2025, Short Papers, Contributed Sessions 1 (pp. 270-276). Springer [10.1007/978-3-031-96303-2_44].
partially_open
File in questo prodotto:
File Dimensione Formato  
Brusa-2025-Statistics for Innovations-preprint.pdf

accesso aperto

Tipologia di allegato: Submitted Version (Pre-print)
Licenza: Creative Commons
Dimensione 286.44 kB
Formato Adobe PDF
286.44 kB Adobe PDF Visualizza/Apri
Brusa-2025-Statistics for Innovations-AAM.pdf

embargo fino al 30/06/2026

Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Licenza: Licenza open access specifica dell’editore
Dimensione 302.45 kB
Formato Adobe PDF
302.45 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Brusa-2025-Statistics for Innovations-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 307.15 kB
Formato Adobe PDF
307.15 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/559007
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
Social impact