We present a three-step likelihood inference approach for the analysis of multidimensional longitudinal data when a large number of response variables are collected at each time occasion. We show the results obtained using this method to identify patients with different levels of Myasthenia Gravis severity and assess symptom progression over time.
Brusa, L., Pennoni, F., Bartolucci, F., Maggi, L. (2025). Dynamic Classification through Three-Step Estimation: Evidence from a Multinational Longitudinal Study of Myasthenia Gravis Patients. In E. di Bella, V. Gioia, C. Lagazio, S. Zaccarin (a cura di), Statistics for Innovation II. SIS 2025, Short Papers, Contributed Sessions 1 (pp. 270-276). Springer [10.1007/978-3-031-96303-2_44].
Dynamic Classification through Three-Step Estimation: Evidence from a Multinational Longitudinal Study of Myasthenia Gravis Patients
Brusa, L
;Pennoni, F;
2025
Abstract
We present a three-step likelihood inference approach for the analysis of multidimensional longitudinal data when a large number of response variables are collected at each time occasion. We show the results obtained using this method to identify patients with different levels of Myasthenia Gravis severity and assess symptom progression over time.| File | Dimensione | Formato | |
|---|---|---|---|
|
Brusa-2025-Statistics for Innovations-preprint.pdf
accesso aperto
Tipologia di allegato:
Submitted Version (Pre-print)
Licenza:
Creative Commons
Dimensione
286.44 kB
Formato
Adobe PDF
|
286.44 kB | Adobe PDF | Visualizza/Apri |
|
Brusa-2025-Statistics for Innovations-AAM.pdf
embargo fino al 30/06/2026
Tipologia di allegato:
Author’s Accepted Manuscript, AAM (Post-print)
Licenza:
Licenza open access specifica dell’editore
Dimensione
302.45 kB
Formato
Adobe PDF
|
302.45 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
Brusa-2025-Statistics for Innovations-VoR.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
307.15 kB
Formato
Adobe PDF
|
307.15 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


