A novel bioorganometallic PNA conjugate (Ir-PNA) was synthesized by covalently bonding a model PNA tetramer to a luminescent bis-cyclometalated Ir(III) complex that acted as a photosensitizer under light irradiation to generate singlet oxygen (1O2). The conjugate was prepared using an Ir complex bearing the 1,10-phenanthroline ligand functionalized with either a free primary amine (Ir-NH2) or a carboxyl group (Ir-COOH) for the conjugation to PNA. The photophysical studies on the Ir-COOH and the Ir-PNA demonstrated that the luminescent properties were maintained after the conjugation of the Ir fragment to PNA. Furthermore, the abilities to produce 1O2 of Ir-COOH and Ir-PNA were confirmed in a cuvette under visible light irradiation employing 1,5-dihydroxynaphthalene as a reporter, and the measured singlet oxygen quantum yield (ΦΔ) supported the Ir-PNA conjugate efficacy as a photosensitizer (ΦΔ = 0.54). Two-photon absorption microscopy on HeLa cells revealed that Ir-PNA localized in both the cytosol and nucleus, suggesting its potential as an intracellular carrier for PNA. Cytotoxicity assays by MTT tests showed that Ir-PNA was nontoxic in the absence of light, but induced cell death (EC50 = 18 μM) after UV irradiation. Overall, the Ir-PNA conjugate represents a promising system for the intracellular delivery of the PNA and its application in PDT.
Dell'Acqua, R., Schifano, V., Dozzi, M., D'Alfonso, L., Panigati, M., Rusmini, P., et al. (2025). Luminescent Iridium-Peptide Nucleic Acid Bioconjugate as Photosensitizer for Singlet Oxygen Production toward a Potential Dual Therapeutic Agent. INORGANIC CHEMISTRY, 64(14), 6898-6911 [10.1021/acs.inorgchem.4c05359].
Luminescent Iridium-Peptide Nucleic Acid Bioconjugate as Photosensitizer for Singlet Oxygen Production toward a Potential Dual Therapeutic Agent
D'Alfonso L.;
2025
Abstract
A novel bioorganometallic PNA conjugate (Ir-PNA) was synthesized by covalently bonding a model PNA tetramer to a luminescent bis-cyclometalated Ir(III) complex that acted as a photosensitizer under light irradiation to generate singlet oxygen (1O2). The conjugate was prepared using an Ir complex bearing the 1,10-phenanthroline ligand functionalized with either a free primary amine (Ir-NH2) or a carboxyl group (Ir-COOH) for the conjugation to PNA. The photophysical studies on the Ir-COOH and the Ir-PNA demonstrated that the luminescent properties were maintained after the conjugation of the Ir fragment to PNA. Furthermore, the abilities to produce 1O2 of Ir-COOH and Ir-PNA were confirmed in a cuvette under visible light irradiation employing 1,5-dihydroxynaphthalene as a reporter, and the measured singlet oxygen quantum yield (ΦΔ) supported the Ir-PNA conjugate efficacy as a photosensitizer (ΦΔ = 0.54). Two-photon absorption microscopy on HeLa cells revealed that Ir-PNA localized in both the cytosol and nucleus, suggesting its potential as an intracellular carrier for PNA. Cytotoxicity assays by MTT tests showed that Ir-PNA was nontoxic in the absence of light, but induced cell death (EC50 = 18 μM) after UV irradiation. Overall, the Ir-PNA conjugate represents a promising system for the intracellular delivery of the PNA and its application in PDT.| File | Dimensione | Formato | |
|---|---|---|---|
|
Dell'acqua-et-al-2025-Inorganic Chemistry-VoR.pdf
accesso aperto
Descrizione: This article is licensed under CC BY 4.0
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Creative Commons
Dimensione
5.56 MB
Formato
Adobe PDF
|
5.56 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


