KV11.1 (hERG1) channels are often overexpressed in human cancers. In leukemias, KV11.1 regulates pro-survival signals that promote resistance to chemotherapy, raising the possibility that inhibitors of KV11.1 could be therapeutically beneficial. However, because of the role of KV11.1 in cardiac repolarization, blocking these channels may cause cardiac arrhythmias. We show that CD-160130, a novel pyrimido-indole compound, blocksKV11.1 channels with a higher efficacy for the KV 11.1 isoform B, in which the IC50 (1.8 μM) was approximately 10-fold lower than observed in KV 11.1 isoform A. At this concentration, CD-160130 also had minor effects on Kir 2.1, KV 1.3,KV1.5, and KCa 3.1. In vitro, CD-160130 induced leukemia cell apoptosis, and could overcome bone marrow mesenchymal stromal cell (MSC)-induced chemoresistance. This effect was caused by interference with the survival signaling pathways triggered by MSCs. In vivo, CD-160130 produced an antileukemic activity, stronger than that caused by cytarabine. Consistent with its atypical target specificity, CD-160130 did not bind to the main binding site of the arrhythmogenicKV11.1 blockers (the Phe656 pore residue). Importantly, in guinea pigs CD-160130 produced neither alteration of the cardiac action potential shape in dissociated cardiomyocytes nor any lengthening of the QT interval in vivo. Moreover, CD-160130 had no myelotoxicity on human bone marrow-derived cells. Therefore, CD-160130 is a promising first-in-class compound to attempt oncologic therapy without cardiotoxicity, based on targeting KV11.1. Because leukemia and cardiac cells tend to express different ratios of the A and B KV 11.1 isoforms, the pharmacological properties of CD-160130 may depend, at least in part, on isoform specificity.

Gasparoli, L., D'Amico, M., Masselli, M., Pillozzi, S., Caves, R., Khuwaileh, R., et al. (2015). New pyrimido-indole compound CD-160130 preferentially inhibits the Kv11.1B isoform and produces antileukemic effects without cardiotoxicity. MOLECULAR PHARMACOLOGY, 87(2), 183-196 [10.1124/mol.114.094920].

New pyrimido-indole compound CD-160130 preferentially inhibits the Kv11.1B isoform and produces antileukemic effects without cardiotoxicity

BECCHETTI, ANDREA
Co-ultimo
;
2015

Abstract

KV11.1 (hERG1) channels are often overexpressed in human cancers. In leukemias, KV11.1 regulates pro-survival signals that promote resistance to chemotherapy, raising the possibility that inhibitors of KV11.1 could be therapeutically beneficial. However, because of the role of KV11.1 in cardiac repolarization, blocking these channels may cause cardiac arrhythmias. We show that CD-160130, a novel pyrimido-indole compound, blocksKV11.1 channels with a higher efficacy for the KV 11.1 isoform B, in which the IC50 (1.8 μM) was approximately 10-fold lower than observed in KV 11.1 isoform A. At this concentration, CD-160130 also had minor effects on Kir 2.1, KV 1.3,KV1.5, and KCa 3.1. In vitro, CD-160130 induced leukemia cell apoptosis, and could overcome bone marrow mesenchymal stromal cell (MSC)-induced chemoresistance. This effect was caused by interference with the survival signaling pathways triggered by MSCs. In vivo, CD-160130 produced an antileukemic activity, stronger than that caused by cytarabine. Consistent with its atypical target specificity, CD-160130 did not bind to the main binding site of the arrhythmogenicKV11.1 blockers (the Phe656 pore residue). Importantly, in guinea pigs CD-160130 produced neither alteration of the cardiac action potential shape in dissociated cardiomyocytes nor any lengthening of the QT interval in vivo. Moreover, CD-160130 had no myelotoxicity on human bone marrow-derived cells. Therefore, CD-160130 is a promising first-in-class compound to attempt oncologic therapy without cardiotoxicity, based on targeting KV11.1. Because leukemia and cardiac cells tend to express different ratios of the A and B KV 11.1 isoforms, the pharmacological properties of CD-160130 may depend, at least in part, on isoform specificity.
Articolo in rivista - Articolo scientifico
cancer; CLL; ECG; hERG; KCa3.1; Kir2.1; Kv1.3; Kv1.5; MSC; potassium channel;
English
2015
87
2
183
196
reserved
Gasparoli, L., D'Amico, M., Masselli, M., Pillozzi, S., Caves, R., Khuwaileh, R., et al. (2015). New pyrimido-indole compound CD-160130 preferentially inhibits the Kv11.1B isoform and produces antileukemic effects without cardiotoxicity. MOLECULAR PHARMACOLOGY, 87(2), 183-196 [10.1124/mol.114.094920].
File in questo prodotto:
File Dimensione Formato  
10281-55800.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 1.82 MB
Formato Adobe PDF
1.82 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/55800
Citazioni
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 27
Social impact