Small signal modal gain measurements have been performed on two-section ridge waveguide InAs/InP (100) quantum-dot amplifiers that we have fabricated with a peak gain wavelength around 1.70μm. The amplifier structure is suitable for monolithic active-passive integration, and the wavelength region and wide gain bandwidth are of interest for integrated devices in biophotonic applications. A 65nm blue shift of the peak wavelength in the gain spectrum has been observed with an increase in injection current density from 1,000 to 3,000A/cm2. The quantum-dot amplifier gain spectra have been analyzed using a quantum-dot rate-equation model that considers only the carrier dynamics. The comparison between measured and simulated spectra shows that two effects in the quantum-dot material introduce this large blue shift in the gain spectrum. The first effect is the carrier concentration dependent state filling with carriers of the bound excited and ground states in the dots. The second effect is the decrease in carrier escape time from the dots to the wetting layer with decreasing dot size. © The Author(s) 2010.

Tilma, B., Tahvili, M., Kotani, J., Notzel, R., Smit, M., Bente, E. (2009). Measurement and analysis of optical gain spectra in 1.6 to 1.8 μm InAs/InP (100) quantum-dot amplifiers. OPTICAL AND QUANTUM ELECTRONICS, 41(10), 735-749 [10.1007/s11082-010-9386-y].

Measurement and analysis of optical gain spectra in 1.6 to 1.8 μm InAs/InP (100) quantum-dot amplifiers

Notzel R.;
2009

Abstract

Small signal modal gain measurements have been performed on two-section ridge waveguide InAs/InP (100) quantum-dot amplifiers that we have fabricated with a peak gain wavelength around 1.70μm. The amplifier structure is suitable for monolithic active-passive integration, and the wavelength region and wide gain bandwidth are of interest for integrated devices in biophotonic applications. A 65nm blue shift of the peak wavelength in the gain spectrum has been observed with an increase in injection current density from 1,000 to 3,000A/cm2. The quantum-dot amplifier gain spectra have been analyzed using a quantum-dot rate-equation model that considers only the carrier dynamics. The comparison between measured and simulated spectra shows that two effects in the quantum-dot material introduce this large blue shift in the gain spectrum. The first effect is the carrier concentration dependent state filling with carriers of the bound excited and ground states in the dots. The second effect is the decrease in carrier escape time from the dots to the wetting layer with decreasing dot size. © The Author(s) 2010.
Articolo in rivista - Articolo scientifico
Gain measurement; Integrated optoelectronics; Quantum dots; Rate equations; Semiconductor optical amplifiers;
English
2009
41
10
735
749
none
Tilma, B., Tahvili, M., Kotani, J., Notzel, R., Smit, M., Bente, E. (2009). Measurement and analysis of optical gain spectra in 1.6 to 1.8 μm InAs/InP (100) quantum-dot amplifiers. OPTICAL AND QUANTUM ELECTRONICS, 41(10), 735-749 [10.1007/s11082-010-9386-y].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/554261
Citazioni
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 17
Social impact