We develop a method, initially due to Salamon, for computing the space of “invariant” forms on an associated bundle X = P ×G V , with a suitable notion of invariance. We determine sufficient conditions for this space to be d-closed. We apply our method to the construction of Calabi–Yau metrics on TCP^1 and TCP^2

Conti, D. (2007). Invariant forms, associated bundles and Calabi-Yau metrics. JOURNAL OF GEOMETRY AND PHYSICS, 57(12), 2483-2508 [10.1016/j.geomphys.2007.08.010].

Invariant forms, associated bundles and Calabi-Yau metrics

CONTI, DIEGO
2007

Abstract

We develop a method, initially due to Salamon, for computing the space of “invariant” forms on an associated bundle X = P ×G V , with a suitable notion of invariance. We determine sufficient conditions for this space to be d-closed. We apply our method to the construction of Calabi–Yau metrics on TCP^1 and TCP^2
Articolo in rivista - Articolo scientifico
vector bundle; special geometry; calabi–yau; symplectic cone
English
Conti, D. (2007). Invariant forms, associated bundles and Calabi-Yau metrics. JOURNAL OF GEOMETRY AND PHYSICS, 57(12), 2483-2508 [10.1016/j.geomphys.2007.08.010].
Conti, D
File in questo prodotto:
File Dimensione Formato  
Invariant forms_Conti.pdf

accesso aperto

Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Dimensione 316.2 kB
Formato Adobe PDF
316.2 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10281/5514
Citazioni
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
Social impact