We develop a method, initially due to Salamon, for computing the space of “invariant” forms on an associated bundle X = P ×G V , with a suitable notion of invariance. We determine sufficient conditions for this space to be d-closed. We apply our method to the construction of Calabi–Yau metrics on TCP^1 and TCP^2
Conti, D. (2007). Invariant forms, associated bundles and Calabi-Yau metrics. JOURNAL OF GEOMETRY AND PHYSICS, 57(12), 2483-2508 [10.1016/j.geomphys.2007.08.010].
Invariant forms, associated bundles and Calabi-Yau metrics
CONTI, DIEGO
2007
Abstract
We develop a method, initially due to Salamon, for computing the space of “invariant” forms on an associated bundle X = P ×G V , with a suitable notion of invariance. We determine sufficient conditions for this space to be d-closed. We apply our method to the construction of Calabi–Yau metrics on TCP^1 and TCP^2File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Invariant forms_Conti.pdf
accesso aperto
Tipologia di allegato:
Author’s Accepted Manuscript, AAM (Post-print)
Dimensione
316.2 kB
Formato
Adobe PDF
|
316.2 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.