Alzheimer’s disease (AD), a debilitating neurodegenerative disorder, remains one of the foremost public health challenges affecting more than 30 million people worldwide with the etiology still largely enigmatic. The intricate gut-brain axis, serving as a vital communication network between the gut and the brain, appears to wield influence in the progression of AD. Our study showcases the remarkable precision of x-ray phase-contrast tomography (XPCT) in conducting an advanced three-dimensional examination of gut cellular composition and structure. The exploitation of micro- and nano-XPCT on various AD mouse models unveiled relevant alterations in villi and crypts, cellular transformations in Paneth and goblet cells, along with the detection of telocytes, neurons, erythrocytes, and mucus secretion by goblet cells within the gut cavity. The observed gut structural variations may elucidate the transition from dysbiosis to neurodegeneration and cognitive decline. Leveraging XPCT could prove pivotal in early detection and prognosis of the disease.
Palermo, F., Marrocco, N., Dacomo, L., Grisafi, E., Moresi, V., Sanna, A., et al. (2025). Investigating gut alterations in Alzheimer's disease: In-depth analysis with micro- and nano-3D X-ray phase contrast tomography. SCIENCE ADVANCES, 11(5) [10.1126/sciadv.adr8511].
Investigating gut alterations in Alzheimer's disease: In-depth analysis with micro- and nano-3D X-ray phase contrast tomography
Grisafi, Elena;
2025
Abstract
Alzheimer’s disease (AD), a debilitating neurodegenerative disorder, remains one of the foremost public health challenges affecting more than 30 million people worldwide with the etiology still largely enigmatic. The intricate gut-brain axis, serving as a vital communication network between the gut and the brain, appears to wield influence in the progression of AD. Our study showcases the remarkable precision of x-ray phase-contrast tomography (XPCT) in conducting an advanced three-dimensional examination of gut cellular composition and structure. The exploitation of micro- and nano-XPCT on various AD mouse models unveiled relevant alterations in villi and crypts, cellular transformations in Paneth and goblet cells, along with the detection of telocytes, neurons, erythrocytes, and mucus secretion by goblet cells within the gut cavity. The observed gut structural variations may elucidate the transition from dysbiosis to neurodegeneration and cognitive decline. Leveraging XPCT could prove pivotal in early detection and prognosis of the disease.| File | Dimensione | Formato | |
|---|---|---|---|
|
Palermo-2025-Science Advances-VoR.pdf
accesso aperto
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Creative Commons
Dimensione
9.76 MB
Formato
Adobe PDF
|
9.76 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


