We provide fine asymptotics of solutions of fractional elliptic equations at boundary points where the domain is locally conical; that is, corner type singularities appear. Our method relies on a suitable smoothing of the corner singularity and an approximation scheme, which allow us to provide a Pohozaev- type inequality. Then the asymptotics of solutions at the conical point follow by an Almgren-type monotonicity formula, blow-up analysis, and Fourier decomposition on eigenspaces of a spherical eigenvalue problem. A strong unique continuation principle follows as a corollary.

De Luca, A., Felli, V., Vita, S. (2025). Unique Continuation from Conical Boundary Points for Fractional Equations. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 57(1), 907-950 [10.1137/24m1663193].

Unique Continuation from Conical Boundary Points for Fractional Equations

De Luca, Alessandra;Felli, Veronica;Vita, Stefano
2025

Abstract

We provide fine asymptotics of solutions of fractional elliptic equations at boundary points where the domain is locally conical; that is, corner type singularities appear. Our method relies on a suitable smoothing of the corner singularity and an approximation scheme, which allow us to provide a Pohozaev- type inequality. Then the asymptotics of solutions at the conical point follow by an Almgren-type monotonicity formula, blow-up analysis, and Fourier decomposition on eigenspaces of a spherical eigenvalue problem. A strong unique continuation principle follows as a corollary.
Articolo in rivista - Articolo scientifico
boundary behavior of solutions; conical boundary points; fractional elliptic equations; monotonicity formula; unique continuation;
English
4-feb-2025
2025
57
1
907
950
partially_open
De Luca, A., Felli, V., Vita, S. (2025). Unique Continuation from Conical Boundary Points for Fractional Equations. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 57(1), 907-950 [10.1137/24m1663193].
File in questo prodotto:
File Dimensione Formato  
De Luca-2025-SIAM J Math Anal-AAM.pdf

accesso aperto

Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Licenza: Creative Commons
Dimensione 562.88 kB
Formato Adobe PDF
562.88 kB Adobe PDF Visualizza/Apri
De Luca-2025-SIAM J Math Anal-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 677.46 kB
Formato Adobe PDF
677.46 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/549201
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
Social impact