The growth, development, and commercialization of artificial intelligence-based technologies such as self-driving cars, augmented-reality viewers, chatbots, and virtual assistants are driving the need for increased computing power. Most of these applications rely on Deep Neural Networks (DNNs), which demand substantial computing capacity to meet user demands. However, this capacity cannot be fully provided by users’ local devices due to their limited processing power, nor by cloud data centers due to high transmission latency from long distances. Edge cloud computing addresses this issue by processing user requests through 5G, which reduces transmission latency from local devices to computing resources and allows the offloading of some computations to cloud back-ends. This paper introduces a model for a Mobile Edge Cloud system designed for an application based on a DNN. The interaction among multiple mobile users and the edge platform is formulated as a one-leader multi-follower Stackelberg game, resulting in a challenging non-convex mixed integer nonlinear programming (MINLP) problem. To tackle this, we propose a heuristic approach based on Karush-Kuhn-Tucker conditions, which solves the MINLP problem significantly faster than the commercial state-of-the-art solvers (up to 50,000 times). Furthermore, we present an algorithm to estimate optimal platform profit when sensitive user parameters are unknown. Comparing this with the full-knowledge scenario, we observe a profit loss of approximately 1%. Lastly, we analyze the advantages for an edge provider to engage in a Stackelberg game rather than setting a fixed price for its users, showing potential profit increases ranging from 16% to 66%.

Sala, R., Sedghani, H., Passacantando, M., Verticale, G., Ardagna, D. (2025). AI Applications Resource Allocation in Computing Continuum: A Stackelberg Game Approach. IEEE TRANSACTIONS ON CLOUD COMPUTING, 13(1 (Jan.-March 2025)), 166-183 [10.1109/TCC.2024.3521213].

AI Applications Resource Allocation in Computing Continuum: A Stackelberg Game Approach

Passacantando, M;
2025

Abstract

The growth, development, and commercialization of artificial intelligence-based technologies such as self-driving cars, augmented-reality viewers, chatbots, and virtual assistants are driving the need for increased computing power. Most of these applications rely on Deep Neural Networks (DNNs), which demand substantial computing capacity to meet user demands. However, this capacity cannot be fully provided by users’ local devices due to their limited processing power, nor by cloud data centers due to high transmission latency from long distances. Edge cloud computing addresses this issue by processing user requests through 5G, which reduces transmission latency from local devices to computing resources and allows the offloading of some computations to cloud back-ends. This paper introduces a model for a Mobile Edge Cloud system designed for an application based on a DNN. The interaction among multiple mobile users and the edge platform is formulated as a one-leader multi-follower Stackelberg game, resulting in a challenging non-convex mixed integer nonlinear programming (MINLP) problem. To tackle this, we propose a heuristic approach based on Karush-Kuhn-Tucker conditions, which solves the MINLP problem significantly faster than the commercial state-of-the-art solvers (up to 50,000 times). Furthermore, we present an algorithm to estimate optimal platform profit when sensitive user parameters are unknown. Comparing this with the full-knowledge scenario, we observe a profit loss of approximately 1%. Lastly, we analyze the advantages for an edge provider to engage in a Stackelberg game rather than setting a fixed price for its users, showing potential profit increases ranging from 16% to 66%.
Articolo in rivista - Articolo scientifico
DNN partitioning; Mobile Edge Cloud system; Stackelberg game;
English
20-dic-2024
2025
13
1 (Jan.-March 2025)
166
183
open
Sala, R., Sedghani, H., Passacantando, M., Verticale, G., Ardagna, D. (2025). AI Applications Resource Allocation in Computing Continuum: A Stackelberg Game Approach. IEEE TRANSACTIONS ON CLOUD COMPUTING, 13(1 (Jan.-March 2025)), 166-183 [10.1109/TCC.2024.3521213].
File in questo prodotto:
File Dimensione Formato  
Sala-2024-IEEE-TCC-AAM.pdf

accesso aperto

Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Licenza: Licenza open access specifica dell’editore
Dimensione 3.95 MB
Formato Adobe PDF
3.95 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/544641
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
Social impact