If f is a smooth function on a Hodge manifold, we construct a canonical sequence of real algebraic functions that converge to f in the smooth topology. The definition of of the approximants is inspired by Berezin-Toeplitz quantization. The proof follows quickly from known results of Fine, Liu and Ma.
Ghigi, A. (2012). On the approximation of functions on a Hodge manifold. ANNALES DE LA FACULTÉ DES SCIENCES DE TOULOUSE., XXI(4), 769-781 [10.5802/afst.1350].
On the approximation of functions on a Hodge manifold
GHIGI, ALESSANDRO CALLISTO
2012
Abstract
If f is a smooth function on a Hodge manifold, we construct a canonical sequence of real algebraic functions that converge to f in the smooth topology. The definition of of the approximants is inspired by Berezin-Toeplitz quantization. The proof follows quickly from known results of Fine, Liu and Ma.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
AFST_2012_6_21_4_769_0.pdf
accesso aperto
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Creative Commons
Dimensione
948.53 kB
Formato
Adobe PDF
|
948.53 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


