A contact distribution C on a manifold M determines a symplectic bundle C → M. In this paper we find normal forms for its lagrangian distributions by classifying vector fields lying in C. Such vector fields are divided into three types and described in terms of the simplest ones (characteristic fields of 1st order PDE's). After having established the equivalence between parabolic Monge-Ampère equations (MAE's) and lagrangian distributions in terms of characteristics, as an application of our results we give normal forms for parabolic MAE's. © 2008 Elsevier B.V. All rights reserved.
Alonso Blanco, R., Manno, G., & Pugliese, F. (2009). Normal forms for lagrangian distributions on 5-dimensional contact manifolds. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 27(2), 212-229 [10.1016/j.difgeo.2008.06.019].
Citazione: | Alonso Blanco, R., Manno, G., & Pugliese, F. (2009). Normal forms for lagrangian distributions on 5-dimensional contact manifolds. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 27(2), 212-229 [10.1016/j.difgeo.2008.06.019]. | |
Tipo: | Articolo in rivista - Articolo scientifico | |
Carattere della pubblicazione: | Scientifica | |
Titolo: | Normal forms for lagrangian distributions on 5-dimensional contact manifolds | |
Autori: | Alonso Blanco, R; Manno, G; Pugliese, F | |
Autori: | ||
Data di pubblicazione: | 2009 | |
Lingua: | English | |
Rivista: | DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1016/j.difgeo.2008.06.019 | |
Appare nelle tipologie: | 01 - Articolo su rivista |