Breast cancer biomarker profiling predominantly relies on tissue testing (surgical and/or biopsy samples). However, the field of liquid biopsy, particularly the analysis of circulating tumour DNA (ctDNA), has witnessed remarkable progress and continues to evolve rapidly. The incorporation of ctDNA-based testing into clinical practice is creating new opportunities for patients with metastatic breast cancer (MBC). ctDNA offers advantages over conventional tissue analyses, as it reflects tumour heterogeneity and enables multiple serial biopsies in a minimally invasive manner. Thus, it serves as a valuable complement to standard tumour tissues and, in certain instances, may even present a potential alternative approach. In the context of MBC, ctDNA testing proves highly informative in the detection of disease progression, monitoring treatment response, assessing actionable biomarkers, and identifying mechanisms of resistance. Nevertheless, ctDNA does exhibit inherent limitations, including its generally low abundance, necessitating timely blood samplings and rigorous management of the pre-analytical phase. The development of highly sensitive assays and robust bioinformatic tools has paved the way for reliable ctDNA analyses. The time has now come to establish how ctDNA and tissue analyses can be effectively integrated into the diagnostic workflow of MBC to provide patients with the most comprehensive and accurate profiling. In this manuscript, we comprehensively analyse the current methodologies employed in ctDNA analysis and explore the potential benefits arising from the integration of tissue and ctDNA testing for patients diagnosed with MBC.

Ranghiero, A., Frascarelli, C., Cursano, G., Pescia, C., Ivanova, M., Vacirca, D., et al. (2023). Circulating tumour DNA testing in metastatic breast cancer: Integration with tissue testing. CYTOPATHOLOGY, 34(6), 519-529 [10.1111/cyt.13295].

Circulating tumour DNA testing in metastatic breast cancer: Integration with tissue testing

Ivanova M.;
2023

Abstract

Breast cancer biomarker profiling predominantly relies on tissue testing (surgical and/or biopsy samples). However, the field of liquid biopsy, particularly the analysis of circulating tumour DNA (ctDNA), has witnessed remarkable progress and continues to evolve rapidly. The incorporation of ctDNA-based testing into clinical practice is creating new opportunities for patients with metastatic breast cancer (MBC). ctDNA offers advantages over conventional tissue analyses, as it reflects tumour heterogeneity and enables multiple serial biopsies in a minimally invasive manner. Thus, it serves as a valuable complement to standard tumour tissues and, in certain instances, may even present a potential alternative approach. In the context of MBC, ctDNA testing proves highly informative in the detection of disease progression, monitoring treatment response, assessing actionable biomarkers, and identifying mechanisms of resistance. Nevertheless, ctDNA does exhibit inherent limitations, including its generally low abundance, necessitating timely blood samplings and rigorous management of the pre-analytical phase. The development of highly sensitive assays and robust bioinformatic tools has paved the way for reliable ctDNA analyses. The time has now come to establish how ctDNA and tissue analyses can be effectively integrated into the diagnostic workflow of MBC to provide patients with the most comprehensive and accurate profiling. In this manuscript, we comprehensively analyse the current methodologies employed in ctDNA analysis and explore the potential benefits arising from the integration of tissue and ctDNA testing for patients diagnosed with MBC.
Articolo in rivista - Articolo scientifico
ctDNA; liquid biopsy; metastatic breast cancer; tissue testing;
English
28-ago-2023
2023
34
6
519
529
none
Ranghiero, A., Frascarelli, C., Cursano, G., Pescia, C., Ivanova, M., Vacirca, D., et al. (2023). Circulating tumour DNA testing in metastatic breast cancer: Integration with tissue testing. CYTOPATHOLOGY, 34(6), 519-529 [10.1111/cyt.13295].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/527923
Citazioni
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 5
Social impact