We employ tools from complex analysis to construct the ∗-logarithm of a quaternionic slice regular function. Our approach enables us to achieve three main objectives: we compute the monodromy associated with the ∗-exponential; we establish sufficient conditions for the ∗-product of two ∗-exponentials to also be a ∗-exponential; we calculate the slice derivative of the ∗-exponential of a regular function.
Altavilla, A., Mongodi, S. (2024). The ∗-Exponential as a Covering Map. COMPUTATIONAL METHODS AND FUNCTION THEORY [10.1007/s40315-024-00558-z].
The ∗-Exponential as a Covering Map
Mongodi S.
2024
Abstract
We employ tools from complex analysis to construct the ∗-logarithm of a quaternionic slice regular function. Our approach enables us to achieve three main objectives: we compute the monodromy associated with the ∗-exponential; we establish sufficient conditions for the ∗-product of two ∗-exponentials to also be a ∗-exponential; we calculate the slice derivative of the ∗-exponential of a regular function.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Altavilla-Mongodi-2024-Computational Methods and Function Theory-VoR.pdf
accesso aperto
Descrizione: CC BY 4.0 This article is licensed under a Creative Commons Attribution 4.0 International License To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Creative Commons
Dimensione
435.42 kB
Formato
Adobe PDF
|
435.42 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.