Gas turbine trip is an operational event that arises when undesirable operating conditions are approached or exceeded, and predicting its onset is a largely unexplored area. The application of novel artificial intelligence methods to this problem is interesting both from the computer science and the engineering point of view, and the results may be relevant in both the academia and the industry. In this paper, we consider data gathered from a fleet of Siemens industrial gas turbines in operation that includes several thermodynamic variables observed during a long period of operation. To assess the possibility of predicting trip events, we first apply a new, systematic statistical analysis to identify the most important variables, then we use a novel machine learning technique known as temporal decision tree, which differs from canonical decision tree because it allows a native treatment of the temporal component, and has an elegant logical interpretation that eases the posthoc validation of the results. Finally, we use the learned models to extract statistical rules. As a result, we are able to select the five most informative variables, build a predictive model with an average accuracy of 73%, and extract several rules. To our knowledge, this is the first attempt to use such an approach not only in the gas turbine field but also in the whole industry domain.

Bechini, G., Losi, E., Manservigi, L., Pagliarini, G., Sciavicco, G., Stan, I., et al. (2023). Statistical Rule Extraction for Gas Turbine Trip Prediction. JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER, 145(5) [10.1115/1.4056287].

Statistical Rule Extraction for Gas Turbine Trip Prediction

Stan I. E.;
2023

Abstract

Gas turbine trip is an operational event that arises when undesirable operating conditions are approached or exceeded, and predicting its onset is a largely unexplored area. The application of novel artificial intelligence methods to this problem is interesting both from the computer science and the engineering point of view, and the results may be relevant in both the academia and the industry. In this paper, we consider data gathered from a fleet of Siemens industrial gas turbines in operation that includes several thermodynamic variables observed during a long period of operation. To assess the possibility of predicting trip events, we first apply a new, systematic statistical analysis to identify the most important variables, then we use a novel machine learning technique known as temporal decision tree, which differs from canonical decision tree because it allows a native treatment of the temporal component, and has an elegant logical interpretation that eases the posthoc validation of the results. Finally, we use the learned models to extract statistical rules. As a result, we are able to select the five most informative variables, build a predictive model with an average accuracy of 73%, and extract several rules. To our knowledge, this is the first attempt to use such an approach not only in the gas turbine field but also in the whole industry domain.
Articolo in rivista - Articolo scientifico
Artificial intelligence; Decision trees; Forecasting; Gases; Learning systems
English
10-gen-2023
2023
145
5
051017
none
Bechini, G., Losi, E., Manservigi, L., Pagliarini, G., Sciavicco, G., Stan, I., et al. (2023). Statistical Rule Extraction for Gas Turbine Trip Prediction. JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER, 145(5) [10.1115/1.4056287].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/524133
Citazioni
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 6
Social impact