This paper provides the theoretical bases for a symbolic approach to text classification, particularly metaphor identification, that generalizes the existing ones and is inspired by similar generalizations of symbolic approaches to learning models for non-text-related tasks.

Del Fante, D., Manzella, F., Sciavicco, G., Stan, E. (2023). A Post-Modern Approach to Automatic Metaphor Identification. In Proceedings of the 9th Italian Conference on Computational Linguistics (pp.1-5). CEUR-WS.

A Post-Modern Approach to Automatic Metaphor Identification

Stan, Eduard
2023

Abstract

This paper provides the theoretical bases for a symbolic approach to text classification, particularly metaphor identification, that generalizes the existing ones and is inspired by similar generalizations of symbolic approaches to learning models for non-text-related tasks.
paper
Automatic metaphor detection and interpretation; Modal logic; NLP; Symbolic learning;
English
9th Italian Conference on Computational Linguistics, CLiC-it 2023 - November 30 - December 2, 2023
2023
Boschetti, F; Lebani, GE; Magnini, B; Novielli, N
Proceedings of the 9th Italian Conference on Computational Linguistics
2023
3596
2023
1
5
https://ceur-ws.org/Vol-3596/
open
Del Fante, D., Manzella, F., Sciavicco, G., Stan, E. (2023). A Post-Modern Approach to Automatic Metaphor Identification. In Proceedings of the 9th Italian Conference on Computational Linguistics (pp.1-5). CEUR-WS.
File in questo prodotto:
File Dimensione Formato  
Del Fante-2023-CEUR Workshop Proceedings-VoR.pdf

accesso aperto

Descrizione: This volume and its papers are published under the Creative Commons License Attribution 4.0 International (CC BY 4.0).
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 1.05 MB
Formato Adobe PDF
1.05 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/524128
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
Social impact