We study contraction metrics computed for dynamical systems with periodic orbits using generalized interpolation with radial basis functions. The robustness of the metric with respect to perturbations of the system is proved and demonstrated for two examples from the literature.

Giesl, P., Hafstein, S., Mehrabi Nezhad, I. (2021). Robustness of contraction metrics computed by radial basis functions. In Proceedings of the 18th International Conference on Informatics in Control, Automation and Robotics, ICINCO 2021 (pp.592-599). SciTePress [10.5220/0010572905920599].

Robustness of contraction metrics computed by radial basis functions

Mehrabi Nezhad I.
2021

Abstract

We study contraction metrics computed for dynamical systems with periodic orbits using generalized interpolation with radial basis functions. The robustness of the metric with respect to perturbations of the system is proved and demonstrated for two examples from the literature.
paper
Contraction metric; Dynamical system; Periodic orbits; Radial basis functions;
English
18th International Conference on Informatics in Control, Automation and Robotics, ICINCO 2021 - 6 July 2021 through 8 July 2021
2021
Proceedings of the 18th International Conference on Informatics in Control, Automation and Robotics, ICINCO 2021
9789897585227
2021
592
599
open
Giesl, P., Hafstein, S., Mehrabi Nezhad, I. (2021). Robustness of contraction metrics computed by radial basis functions. In Proceedings of the 18th International Conference on Informatics in Control, Automation and Robotics, ICINCO 2021 (pp.592-599). SciTePress [10.5220/0010572905920599].
File in questo prodotto:
File Dimensione Formato  
Giesl-2021-ICINCO 2021-VoR.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 2.23 MB
Formato Adobe PDF
2.23 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/523974
Citazioni
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
Social impact