We produce congruences modulo a prime p > 3 for sums ∑k (3kk) xk over ranges 0 ≤ k < q and 0 ≤ k < q/3, where q is a power of p. Here x equals either c2/(1 - c) 3, or 4s2/(27(s2 - 1)), where c and s are indeterminates. In the former case, we deal more generally with shifted binomial coefficients 3k+ek. Our method derives such congruences directly from closed forms for the corresponding series.

Mattarei, S., Tauraso, R. (2025). Congruences for partial sums of the generating series for (3kk). INTERNATIONAL JOURNAL OF NUMBER THEORY, 21(1 (February 2025)), 237-256 [10.1142/S1793042125500125].

Congruences for partial sums of the generating series for (3kk)

Mattarei S.;
2025

Abstract

We produce congruences modulo a prime p > 3 for sums ∑k (3kk) xk over ranges 0 ≤ k < q and 0 ≤ k < q/3, where q is a power of p. Here x equals either c2/(1 - c) 3, or 4s2/(27(s2 - 1)), where c and s are indeterminates. In the former case, we deal more generally with shifted binomial coefficients 3k+ek. Our method derives such congruences directly from closed forms for the corresponding series.
Articolo in rivista - Articolo scientifico
binomial coefficients; Congruences; generating functions;
English
ago-2024
2025
21
1 (February 2025)
237
256
open
Mattarei, S., Tauraso, R. (2025). Congruences for partial sums of the generating series for (3kk). INTERNATIONAL JOURNAL OF NUMBER THEORY, 21(1 (February 2025)), 237-256 [10.1142/S1793042125500125].
File in questo prodotto:
File Dimensione Formato  
Mattarei-2024-Int J Number Theory-AAM.pdf

Accesso Aperto

Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Licenza: Altro
Dimensione 384.13 kB
Formato Adobe PDF
384.13 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/523520
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
Social impact