We produce congruences modulo a prime p > 3 for sums ∑k binomial(3k,k) x^k over ranges 0 ≤ k < q and 0 ≤ k < q/3, where q is a power of p. Here x equals either c2/(1 - c) 3, or 4s2/(27(s2 - 1)), where c and s are indeterminates. In the former case, we deal more generally with shifted binomial coefficients 3k+ek. Our method derives such congruences directly from closed forms for the corresponding series.

Mattarei, S., Tauraso, R. (2024). Congruences for partial sums of the generating series for binomial(3k.k). INTERNATIONAL JOURNAL OF NUMBER THEORY, 1-20 [10.1142/S1793042125500125].

Congruences for partial sums of the generating series for binomial(3k.k)

Mattarei S.;
2024

Abstract

We produce congruences modulo a prime p > 3 for sums ∑k binomial(3k,k) x^k over ranges 0 ≤ k < q and 0 ≤ k < q/3, where q is a power of p. Here x equals either c2/(1 - c) 3, or 4s2/(27(s2 - 1)), where c and s are indeterminates. In the former case, we deal more generally with shifted binomial coefficients 3k+ek. Our method derives such congruences directly from closed forms for the corresponding series.
Articolo in rivista - Articolo scientifico
binomial coefficients; Congruences; generating functions;
English
2024
1
20
embargoed_20250827
Mattarei, S., Tauraso, R. (2024). Congruences for partial sums of the generating series for binomial(3k.k). INTERNATIONAL JOURNAL OF NUMBER THEORY, 1-20 [10.1142/S1793042125500125].
File in questo prodotto:
File Dimensione Formato  
Mattarei-2024-Int J Number Theory-AAM.pdf

embargo fino al 27/08/2025

Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Licenza: Altro
Dimensione 384.13 kB
Formato Adobe PDF
384.13 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/523520
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
Social impact