We study and partially classify cubic rational expressions over a finite field F_q, up to equivalence given by composition with independent M¨obius transformations on each side. When q is even we obtain a full classification. When q is odd we restrict our classification to expressions with at most three ramification points. However, we prove a general upper bound of 4q for the total number of equivalence classes.

Mattarei, S., Pizzato, M. (2024). Cubic rational expressions over a finite field. JOURNAL OF ALGEBRA AND ITS APPLICATIONS [10.1142/S0219498825503190].

Cubic rational expressions over a finite field

Mattarei S.
;
2024

Abstract

We study and partially classify cubic rational expressions over a finite field F_q, up to equivalence given by composition with independent M¨obius transformations on each side. When q is even we obtain a full classification. When q is odd we restrict our classification to expressions with at most three ramification points. However, we prove a general upper bound of 4q for the total number of equivalence classes.
Articolo in rivista - Articolo scientifico
Cubic rational maps
English
2024
2550319
embargoed_20250712
Mattarei, S., Pizzato, M. (2024). Cubic rational expressions over a finite field. JOURNAL OF ALGEBRA AND ITS APPLICATIONS [10.1142/S0219498825503190].
File in questo prodotto:
File Dimensione Formato  
Mattarei-2024-J Algebra Appl-AAM.pdf

embargo fino al 12/07/2025

Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Licenza: Altro
Dimensione 394 kB
Formato Adobe PDF
394 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/523519
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
Social impact