Given a (unilateral or bilateral) shift operatora on a probability space, we prove under suitable assumptions that the ergodic means of a square integrable function converge pointwise almost everywhere with a speed of convergence which, up to a small logarithmic transgression, is essentially of the order of N−1/2 . We also provide a few applications of our results, especially in the case of shifts associated with toral endomorphisms.

Chalmoukis, N., Colzani, L., Gariboldi, B., Monguzzi, A. (2024). On the speed of convergence in the ergodic theorem for shift operators. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1-19 [10.4153/s0008414x24000658].

On the speed of convergence in the ergodic theorem for shift operators

Chalmoukis, Nikolaos;Colzani, Leonardo;Gariboldi, Bianca;Monguzzi, Alessandro
2024

Abstract

Given a (unilateral or bilateral) shift operatora on a probability space, we prove under suitable assumptions that the ergodic means of a square integrable function converge pointwise almost everywhere with a speed of convergence which, up to a small logarithmic transgression, is essentially of the order of N−1/2 . We also provide a few applications of our results, especially in the case of shifts associated with toral endomorphisms.
Articolo in rivista - Articolo scientifico
Ergodic theorem, convergence rate, shift operators, toral endomorphisms
English
4-nov-2024
2024
1
19
none
Chalmoukis, N., Colzani, L., Gariboldi, B., Monguzzi, A. (2024). On the speed of convergence in the ergodic theorem for shift operators. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1-19 [10.4153/s0008414x24000658].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/522945
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact