Given a probability space (X,μ), a square integrable function f on such space and a (unilateral or bilateral) shift operator T, we prove under suitable assumptions that the ergodic means N-1n=0N-1 Tnf converge pointwise almost everywhere to zero with a speed of convergence which, up to a small logarithmic transgression, is essentially of the order of N-1/2. We also provide a few applications of our results, especially in the case of shifts associated with toral endomorphisms.

Chalmoukis, N., Colzani, L., Gariboldi, B., Monguzzi, A. (2024). On the speed of convergence in the ergodic theorem for shift operators. CANADIAN JOURNAL OF MATHEMATICS, 1-19 [10.4153/s0008414x24000658].

On the speed of convergence in the ergodic theorem for shift operators

Chalmoukis, Nikolaos;Colzani, Leonardo;Gariboldi, Bianca;Monguzzi, Alessandro
2024

Abstract

Given a probability space (X,μ), a square integrable function f on such space and a (unilateral or bilateral) shift operator T, we prove under suitable assumptions that the ergodic means N-1n=0N-1 Tnf converge pointwise almost everywhere to zero with a speed of convergence which, up to a small logarithmic transgression, is essentially of the order of N-1/2. We also provide a few applications of our results, especially in the case of shifts associated with toral endomorphisms.
Articolo in rivista - Articolo scientifico
convergence rate; Ergodic theorem; shift operators; toral endomorphisms;
English
4-nov-2024
2024
1
19
partially_open
Chalmoukis, N., Colzani, L., Gariboldi, B., Monguzzi, A. (2024). On the speed of convergence in the ergodic theorem for shift operators. CANADIAN JOURNAL OF MATHEMATICS, 1-19 [10.4153/s0008414x24000658].
File in questo prodotto:
File Dimensione Formato  
unpaywall-bitstream--516182674.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 410.62 kB
Formato Adobe PDF
410.62 kB Adobe PDF Visualizza/Apri
2024-Chalmoukis-Gariboldi-Monguzzi.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 410.79 kB
Formato Adobe PDF
410.79 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/522945
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
Social impact