A classification of local asymptotic profiles and strong unique continuation properties are established for a class of fractional heat equations with a Hardy-type potential, via an Almgren-Poon monotonicity formula combined with a blow-up analysis.

Felli, V., Primo, A., Siclari, G. (2025). On fractional parabolic equations with Hardy-type potentials. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 27(2) [10.1142/S0219199723500621].

On fractional parabolic equations with Hardy-type potentials

Felli V.;Siclari G.
2025

Abstract

A classification of local asymptotic profiles and strong unique continuation properties are established for a class of fractional heat equations with a Hardy-type potential, via an Almgren-Poon monotonicity formula combined with a blow-up analysis.
Articolo in rivista - Articolo scientifico
Fractional parabolic equations; unique continuation; monotonicity formula; Hardy-type potentials
English
2025
27
2
2350062
reserved
Felli, V., Primo, A., Siclari, G. (2025). On fractional parabolic equations with Hardy-type potentials. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 27(2) [10.1142/S0219199723500621].
File in questo prodotto:
File Dimensione Formato  
Felli-2023-Comm Contemp Math-AAM .pdf

Solo gestori archivio

Descrizione: Accepted Manuscript
Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Licenza: Tutti i diritti riservati
Dimensione 497.63 kB
Formato Adobe PDF
497.63 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/522481
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
Social impact