We consider Gagliardo–Nirenberg inequalities on the sphere which interpolate between the Poincaré inequality and the Sobolev inequality, and include the logarithmic Sobolev inequality as a special case. We establish explicit stability results in the subcritical regime using spectral decomposition techniques, and entropy and carré du champ methods applied to nonlinear diffusion flows.

Brigati, G., Dolbeault, J., Simonov, N. (2024). Logarithmic Sobolev and interpolation inequalities on the sphere: Constructive stability results. ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE, 41(5), 1289-1321 [10.4171/AIHPC/106].

Logarithmic Sobolev and interpolation inequalities on the sphere: Constructive stability results

Brigati, G;
2024

Abstract

We consider Gagliardo–Nirenberg inequalities on the sphere which interpolate between the Poincaré inequality and the Sobolev inequality, and include the logarithmic Sobolev inequality as a special case. We establish explicit stability results in the subcritical regime using spectral decomposition techniques, and entropy and carré du champ methods applied to nonlinear diffusion flows.
Articolo in rivista - Articolo scientifico
Gagliardo–Nirenberg inequalities; Logarithmic Sobolev inequality; spectral decomposition; sphere; stability;
English
28-nov-2023
2024
41
5
1289
1321
none
Brigati, G., Dolbeault, J., Simonov, N. (2024). Logarithmic Sobolev and interpolation inequalities on the sphere: Constructive stability results. ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE, 41(5), 1289-1321 [10.4171/AIHPC/106].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/518919
Citazioni
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
Social impact