We discovered that glioblastoma (GBM) cells use Cool-1/β-pix to inhibit normal activation of the c-Cbl ubiquitin ligase via the redox/Fyn/c-Cbl pathway and that c-Cbl inhibition is critical for GBM cell function. Restoring normal c-Cbl activity by Cool-1 knockdown in vitro reduced GBM cell division, almost eliminated generation of adhesion-independent spheroids, reduced the representation of cells expressing antigens thought to identify tumor initiating cells (TICs), reduced levels of several proteins of critical importance in TIC function (such as Notch-1 and Sox2), and increased sensitivity to BCNU (carmustine) and temozolomide (TMZ). In vivo, Cool-1 knockdown greatly suppressed the ability of GBM cells to generate tumors, an outcome that was c-Cbl dependent. In contrast, Cool-1 knockdown did not reduce division or increase BCNU or TMZ sensitivity in primary glial progenitor cells and Cool-1/c-Cbl complexes were not found in normal brain tissue. Our studies provide the first evidence that Cool-1 may be critical in the biology of human tumors, that suppression of c-Cbl by Cool-1 may be critical for generation of at least a subset of GBMs and offer a novel target that appears to be selectively necessary for TIC function and modulates chemoresistance in GBM cells. Targeting such proteins that inhibit c-Cbl offers potentially attractive opportunities for therapeutic development. © 2014 AlphaMed Press.

Stevens, B., Folts, C., Cui, W., Bardin, A., Walter, K., Carson Walter, E., et al. (2014). Cool-1 mediated inhibition of c-Cbl modulates multiple critical properties of glioblastomas, including the ability to generate tumors in vivo. STEM CELLS, 32(5), 1124-1135 [10.1002/stem.1644].

Cool-1 mediated inhibition of c-Cbl modulates multiple critical properties of glioblastomas, including the ability to generate tumors in vivo

VESCOVI, ANGELO LUIGI;
2014

Abstract

We discovered that glioblastoma (GBM) cells use Cool-1/β-pix to inhibit normal activation of the c-Cbl ubiquitin ligase via the redox/Fyn/c-Cbl pathway and that c-Cbl inhibition is critical for GBM cell function. Restoring normal c-Cbl activity by Cool-1 knockdown in vitro reduced GBM cell division, almost eliminated generation of adhesion-independent spheroids, reduced the representation of cells expressing antigens thought to identify tumor initiating cells (TICs), reduced levels of several proteins of critical importance in TIC function (such as Notch-1 and Sox2), and increased sensitivity to BCNU (carmustine) and temozolomide (TMZ). In vivo, Cool-1 knockdown greatly suppressed the ability of GBM cells to generate tumors, an outcome that was c-Cbl dependent. In contrast, Cool-1 knockdown did not reduce division or increase BCNU or TMZ sensitivity in primary glial progenitor cells and Cool-1/c-Cbl complexes were not found in normal brain tissue. Our studies provide the first evidence that Cool-1 may be critical in the biology of human tumors, that suppression of c-Cbl by Cool-1 may be critical for generation of at least a subset of GBMs and offer a novel target that appears to be selectively necessary for TIC function and modulates chemoresistance in GBM cells. Targeting such proteins that inhibit c-Cbl offers potentially attractive opportunities for therapeutic development. © 2014 AlphaMed Press.
Articolo in rivista - Articolo scientifico
glioblastoma
English
2014
32
5
1124
1135
none
Stevens, B., Folts, C., Cui, W., Bardin, A., Walter, K., Carson Walter, E., et al. (2014). Cool-1 mediated inhibition of c-Cbl modulates multiple critical properties of glioblastomas, including the ability to generate tumors in vivo. STEM CELLS, 32(5), 1124-1135 [10.1002/stem.1644].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/51808
Citazioni
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
Social impact