The layer-resolved cation occupancy for different conducting and insulating interfaces of LaAlO3 (LAO) thin films on SrTiO3 (STO) has been determined by angle-resoled X-ray photoelectron spectroscopy (AR-XPS). Three STO interfaces with LAO have been considered, namely, a conducting interface with a 5 unit cell (u.c.) LAO layer, an insulating interface with a 5 u.c. LAO layer, and an insulating interface with a 3 u.c. LAO layer. Considering inelastic and elastic scattering processes in the transport approximation, the core-level signal attenuation has been modeled on the basis of Monte Carlo calculations of the electron trajectories across the heterostructures. Different effects involving cation stoichiometry and diffusion through the interface have been considered to interpret data. Beyond a mere abrupt interface modeling, the LaAlO3/SrTiO3 heterojunction is shown to host cation diffusion processes within 3-4 unit cells in the bulk layer, along with a clear Sr substoichiometry, an issue so far virtually neglected in the analysis of these systems. The present results show the capability of the AR-XPS modeling to explore element-sensitive properties at the oxide interfaces, matching and completing the information that can be provided by probes based on electron microscopy or X-ray scattering.

Salvinelli, G., Drera, G., Giampietri, A., Sangaletti, L. (2015). Layer-Resolved Cation Diffusion and Stoichiometry at the LaAlO3/SrTiO3 Heterointerface Probed by X-ray Photoemission Experiments and Site Occupancy Modeling. ACS APPLIED MATERIALS & INTERFACES, 7(46), 25648-25657 [10.1021/acsami.5b06094].

Layer-Resolved Cation Diffusion and Stoichiometry at the LaAlO3/SrTiO3 Heterointerface Probed by X-ray Photoemission Experiments and Site Occupancy Modeling

Drera G;
2015

Abstract

The layer-resolved cation occupancy for different conducting and insulating interfaces of LaAlO3 (LAO) thin films on SrTiO3 (STO) has been determined by angle-resoled X-ray photoelectron spectroscopy (AR-XPS). Three STO interfaces with LAO have been considered, namely, a conducting interface with a 5 unit cell (u.c.) LAO layer, an insulating interface with a 5 u.c. LAO layer, and an insulating interface with a 3 u.c. LAO layer. Considering inelastic and elastic scattering processes in the transport approximation, the core-level signal attenuation has been modeled on the basis of Monte Carlo calculations of the electron trajectories across the heterostructures. Different effects involving cation stoichiometry and diffusion through the interface have been considered to interpret data. Beyond a mere abrupt interface modeling, the LaAlO3/SrTiO3 heterojunction is shown to host cation diffusion processes within 3-4 unit cells in the bulk layer, along with a clear Sr substoichiometry, an issue so far virtually neglected in the analysis of these systems. The present results show the capability of the AR-XPS modeling to explore element-sensitive properties at the oxide interfaces, matching and completing the information that can be provided by probes based on electron microscopy or X-ray scattering.
Articolo in rivista - Articolo scientifico
cation interdiffusion; heterointerfaces; intermixing; LaAlO3; oxides; photoemission; SrTiO3
English
2015
7
46
25648
25657
none
Salvinelli, G., Drera, G., Giampietri, A., Sangaletti, L. (2015). Layer-Resolved Cation Diffusion and Stoichiometry at the LaAlO3/SrTiO3 Heterointerface Probed by X-ray Photoemission Experiments and Site Occupancy Modeling. ACS APPLIED MATERIALS & INTERFACES, 7(46), 25648-25657 [10.1021/acsami.5b06094].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/517500
Citazioni
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
Social impact