Let Γ be a discrete countable group and let (Ω, μ) be an ergodic standard Borel probability Γ-space. Given any non-elementary virtual dendro-morphism (that is a measurable cocycle in the automorphism group of a dendrite), we construct a unitary representation V with no invariant vectors such that H2b(Γ; V ) contains a non-zero class. As a consequence, all virtual dendro-morphisms of a higher rank lattice must be elementary.

Savini, A. (2022). A NOTE ON ELEMENTARITY OF VIRTUAL DENDRO-MORPHISMS FOR HIGHER RANK LATTICES. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 150(11), 4995-5008 [10.1090/proc/16024].

A NOTE ON ELEMENTARITY OF VIRTUAL DENDRO-MORPHISMS FOR HIGHER RANK LATTICES

Savini A.
2022

Abstract

Let Γ be a discrete countable group and let (Ω, μ) be an ergodic standard Borel probability Γ-space. Given any non-elementary virtual dendro-morphism (that is a measurable cocycle in the automorphism group of a dendrite), we construct a unitary representation V with no invariant vectors such that H2b(Γ; V ) contains a non-zero class. As a consequence, all virtual dendro-morphisms of a higher rank lattice must be elementary.
Articolo in rivista - Articolo scientifico
Dendrite, bounded cohomology, measurable cocycles
English
2022
150
11
4995
5008
partially_open
Savini, A. (2022). A NOTE ON ELEMENTARITY OF VIRTUAL DENDRO-MORPHISMS FOR HIGHER RANK LATTICES. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 150(11), 4995-5008 [10.1090/proc/16024].
File in questo prodotto:
File Dimensione Formato  
Savini-2022-Proceedings of the American Mathematical Society-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 235.42 kB
Formato Adobe PDF
235.42 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Savini-2022-Proceedings of the American Mathematical Society-Preprint.pdf

accesso aperto

Tipologia di allegato: Submitted Version (Pre-print)
Licenza: Altro
Dimensione 310.92 kB
Formato Adobe PDF
310.92 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/516693
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
Social impact